

Stantec Consulting Services Inc. 10509 Timberwood Circle Suite 100 Louisville, KY 40223-5301 Tel: (502) 212-5000 Fax: (502) 212-5055

February 15, 2012

ltr_002_175551015

Mr. Michael S. Turnbow Tennessee Valley Authority 1101 Market Street, LP 2G-C Chattanooga, Tennessee 37402-2801

Re: Results of Pseudostatic Slope Stability Analysis Active CCP Disposal Facilities BRF, COF, GAF, JSF, JOF, KIF, PAF, and WCF

Dear Mr. Turnbow:

As requested, Stantec Consulting Services Inc. (Stantec) has conducted pseudostatic slope stability analyses for ground motion levels corresponding to a return period of 2,500 years to support the U.S. Environmental Protection Agency's assessment of TVA's CCP disposal facilities. The results for Bull Run (BFR), Colbert (COF), Gallatin (GAF), John Sevier (JSF), Johnsonville (JOF), Kingston (KIF), Paradise (PAF), and Widows Creek (WCF) are provided in this letter.

Approach

The analyses were performed for current conditions using pseudostatic stability methods, where the added inertial load from an earthquake is assumed to be represented by a simple horizontal pseudostatic coefficient. Specifics related to the analyses/approach are as follows:

- Subsurface data was obtained from the Stantec's recent geotechnical studies performed in 2009 and 2010 time frame.
- SLOPE/W software (from GEO-SLOPE International, Inc.) was used to perform the calculations.
- One existing SLOPE/W cross-section model per disposal facility was selected from the previous studies for analysis. For simplicity and conservatism, the selected sections represent the facility's lowest current static (long-term) factor of safety. The SLOPE/W models were updated to reflect any significant mitigations or operational changes that have occurred since completion of Stantec's geotechnical studies.
- Undrained shear strength parameters were used.
- Ground motion levels corresponding to a return period of 2,500 years (or approximate exceedance probability of 2% in 50 years) was used for selection of a horizontal seismic coefficient. For simplicity, the horizontal seismic coefficient was selected to equal the total hazard peak ground acceleration (rock) for 2,500 year return periods as shown in plant-

Stantec Consulting Services Inc. One Team. Infinite Solutions Tennessee Valley Authority February 15, 2012 Page 2

specific tables (Tables 13 through 23) of TVA's March 28, 2011 region-specific seismic hazard study performed by AMEC Geomatrix, Inc.

• A target factor of safety (FS) of 1.0 was considered for comparing results.

Results

The results of the pseudostatic stability analyses are enclosed (summary spreadsheet, SLOPE/W cross-sections, and plan views showing cross-section locations). The results indicate factors of safety greater than or equal to the target of 1.0.

Stantec appreciates the opportunity to provide these services. If you have questions, or if we can provide additional information, please let us know.

Sincerely,

STANTEC CONSULTING SERVICES INC.

ande l

Randy L. Roberts, PE Principal

Enclosures

/cdm

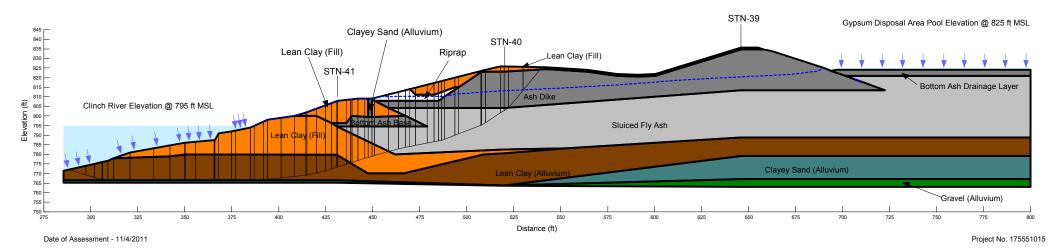
Pseudostatic Stability Analysis Summary - TVA Active CCP Disposal Facilities

BRF, COF, GAF, JSF, JOF, KIF, PAF, WCF

	CCP Disposal Facility		2,500 yr Return		
Plant	Name	Туре	Cross-Section	PGA (g)	Factor of Safety
	Gypsum Disposal Area 2A	Wet Stack	I		1.0
BRF	Fly Ash Disposal Area 2	Impoundment	S	0.131	1.4
	Bottom Ash Disposal Area 1	Stack	D		1.1
	Disposal Area 5 Stack	Stack	I		1.0
COF	Disposal Area 5 Stilling Basin	Impoundment	J	0.138	1.2
	Ash Pond 4	Impoundment	D		1.0
GAF	Ash Pond A	Impoundment	К	0.108	1.0
GAF	Ash Pond E	Impoundment	В	0.108	1.3
JSF	Bottom Ash Pond	Impoundment	I	0.115	2.2
JOF	Ash Disposal Area 2	Impoundment	К	0.254	1.0
KIF	Stilling Pond	Impoundment	132+37	0.115	1.0
	Slag Ponds 2A and 2B	Impoundment	Typical		1.1
PAF	Scrubber Sludge Complex	Impoundment	G	0.157	1.0
	Peabody Ash Pond	Impoundment	А		1.0
	Gypsum Stack	Wet Stack	F		1.5
WCF	Dredge Cell (Old Scrubber Sludge Pond)	Impoundment	D	0.1	1.1
	Main Ash Pond	Impoundment	J		1.4

Bull Run Fossil Plant (BRF)

Section I - Gypsum Disposal Area 2A Bull Run Fossil Plant Clinton, Tennessee


Note:

The results of the analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Cohesion Material Type Unit Weight Friction Angle Sluiced Fly Ash 105 pcf 100 psf 18.4 ° 17.6 ° Lean Clay (Fill) 126 pcf 700 psf Gravel (Alluvium) 135 pcf 100 psf 30 ° Clayey Sand (Alluvium) 112 pcf 100 psf 23 ° Lean Clay (Alluvium) 123 pcf 350 psf 21.1 ° Bottom Ash Base 105 pcf 33 ° 0 psf Ash Dike 105 pcf 33 ° 0 psf 40 ° Rip Rap 115 pcf 0 psf

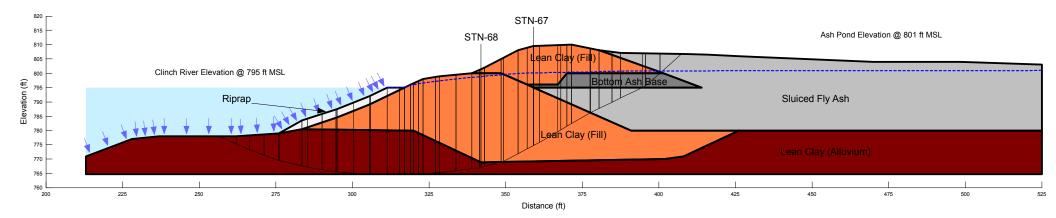
Factor of Safety: 1.0

Horizontal Seismic Coefficient Kh = 0.131 g 2500 year Return Period Event

Section S - Fly Ash Disposal Area 2 Bull Run Fossil Plant Clinton, Tennessee

Note:

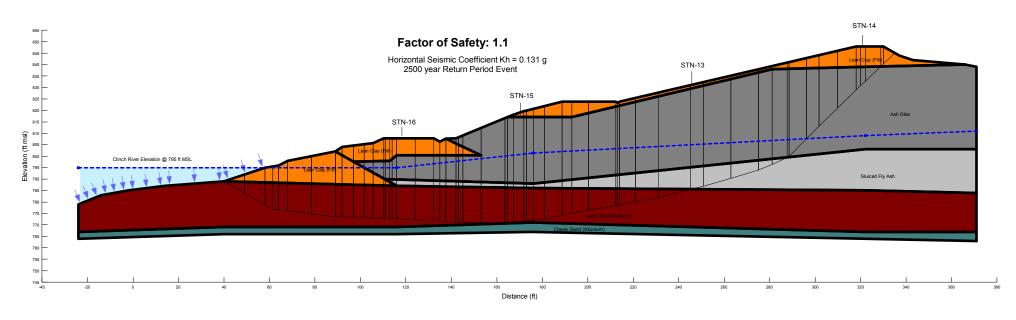
The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warrenties can be made regarding the continuity of subsurface conditions between the borings.


Additional remediation measures taken from URS plans dated 08/13/2010

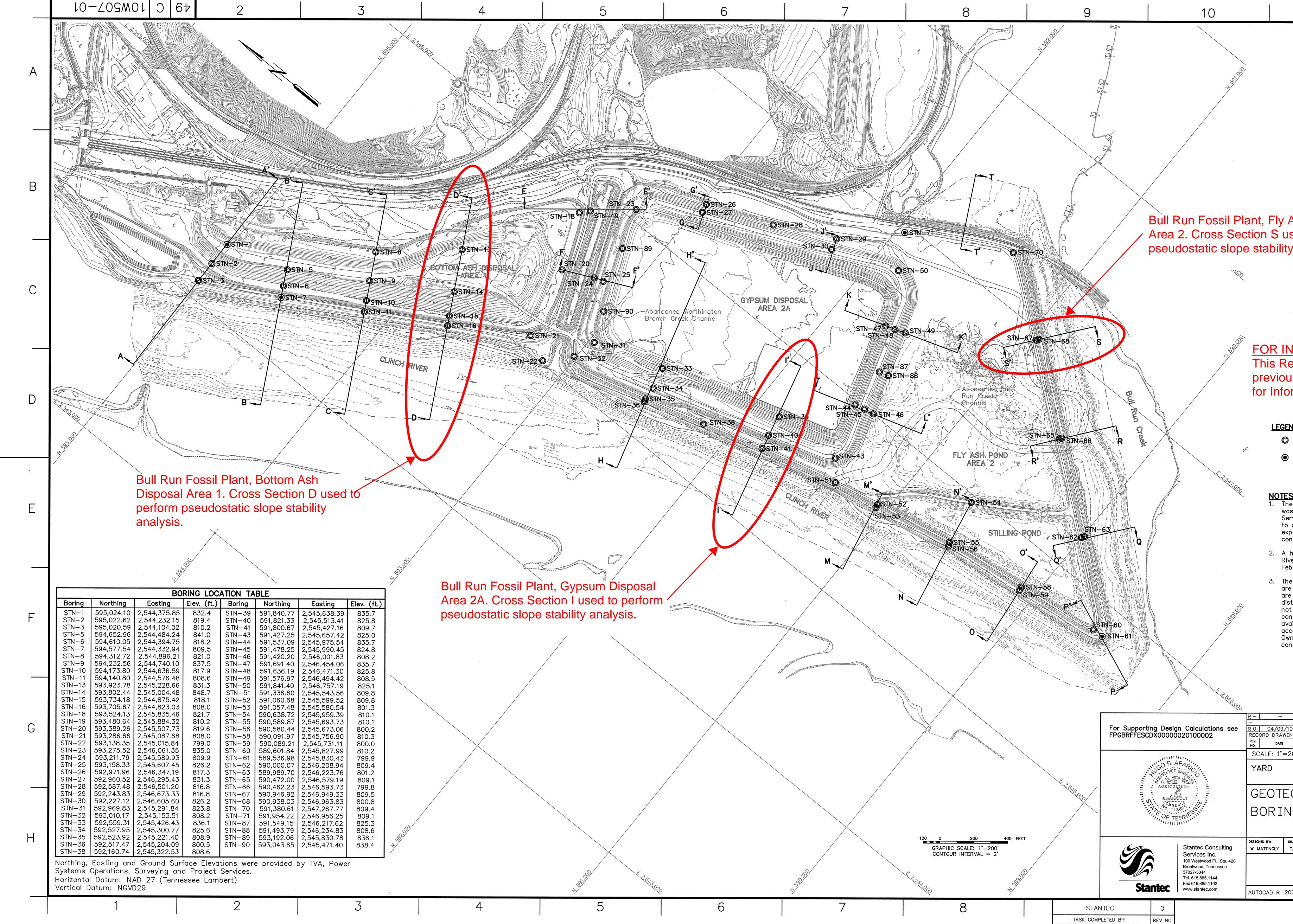
Material Type	Unit Weight	Cohesion	Friction Angle
Sluiced Fly Ash	105 pcf	100 psf	18.4 °
Lean Clay (Fill)	126 pcf	700 psf	17.6 °
Lean Clay (Alluvium)	123 pcf	350 psf	21.1 °
Bottom Ash Base	105 pcf	0 psf	33 °
Rip-Rap	105 pcf	0 psf	40 °

Factor of Safety: 1.4

Horizontal Seismic Coefficient Kh = Value: 0.131 g 2500-year Return Period Event


Date of Assessment - 11/4/2011

Section D - Bottom Ash Disposal Area 1 Bull Run Fossil Plant Clinton, Tennessee


Material Type	Unit Weight	Cohesion	Friction Angle
Lean Clay (Fill) - Lower Confinement	126	1000 psf	0°
Lean Clay (Fill) - Higher Confinement	126	50 psf	17.6°
Ash Dike	105	0 psf	33°
Sluiced Ash	105	100 psf	18.4°
Lean Clay (Alluvium) - Lower Confinement	123	528 psf	0°
Lean Clay (Alluvium) - Higher Confinement	123	20.5 psf	21.1°
Clayey Sand (Alluvium)	123	100 psf	23°

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warrenties can be made regarding the continuity of subsurface conditions between the borings.

Date of Assessment - 11/22/2011

Project No. 175551015

	A
ant Elv Ach Dianacal	В
ant, Fly Ash Disposal tion S used to perform e stability analysis.	
FOR INFORMATION ONLY	С
This Record Drawing which has been previously submitted to TVA is provided for Information Only. LEGEND © Soil Boring with Undisturbed (Shelby) Tube Samples and/or Standard Penetration Tests	D
 Soil Boring with Undisturbed (Shelby) Tube Samples and/or Standard Penetration Tests and Rock Core NOTES: The topographic mapping presented on this drawing was developed by TVA Surveying and Project Services, in April, 2009. This plan view was prepared to support development of the geotechnical exploration program and should not be used for construction. A hydrographic survey was performed on the Clinch River in September, 2009 and on the Area 2 ponds in 	Ē
 Services, in April, 2009. This plan view was prepared to support development of the geotechnical exploration program and should not be used for construction. A hydrographic survey was performed on the Clinch River in September, 2009 and on the Area 2 ponds in February, 2006. The geotechnical information and data furnished herein are not intended as representation or warranties but are furnished for information only. It shall be distinctly understood that the Owner or Engineer will not be responsible for any deduction, interpretation or conclusion drawn therefrom. The information is made available in order that the Contractor may have ready access to the same information available to the Owner and the Engineer and is not part of this contract. 	F
RECORD DRAWING REV. DATE DSGN DRIM CHKD SUPV RVMD APPD ISSD PROJECT AS CONST REV SCALE: 1"=200' EXCEPT AS NOTED YARD	DISCIPLINE INTERFACE 1 2 3 4
GEOTECHNICAL EXPLORATION BORING LAYOUT DESIGNED BY: DRAWN BY: CHECKED BY: SUPERVISED BY: REVIEWED BY: APPROVED BY: ISSUED BY: W. MATTINGLY T. JOHNSON P. KISER S. FIELD H. APARICIO H. APARICIO T. JOHNSON BULL RUN FOSSIL PLANT	

12

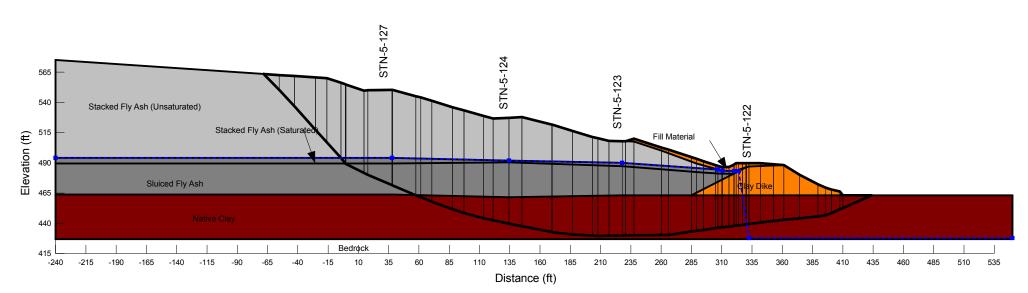
TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING						
000	date 04/09/10	49	С	10W507-01	R O	
				PLOT FACTOR:XX W_TVA	C.A.D. DRAWING DO NOT ALTER MANUA	ALLY

Colbert Fossil Plant (COF)

Section I - Disposal Area 5 Colbert Fossil Plant Tuscumbia, Alabama

Note:

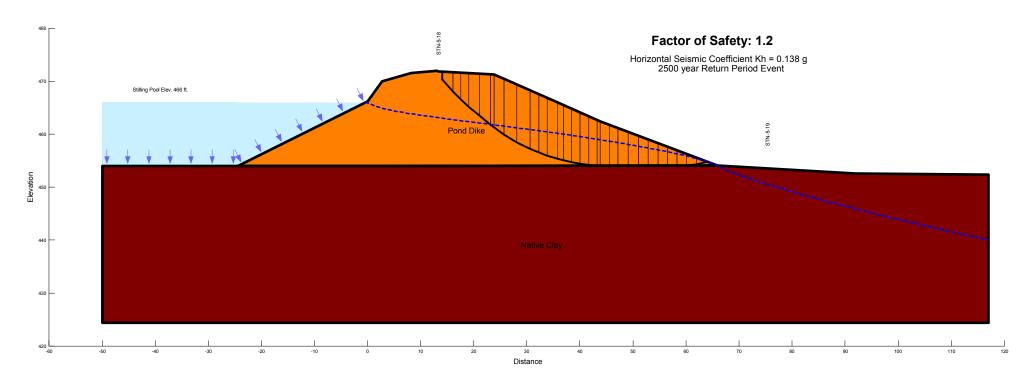
The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.


Additional remediation measures taken from URS plans dated 7/09/2010.

Material Type	Unit Weight	Cohesion	Friction Angle
Stacked Fly Ash (Unsaturated)	105 pcf	0 psf	32 °
Stacked Fly Ash (Saturated)	105 pcf	0 psf	32 °
Sluiced Fly Ash	85 pcf	400 psf	15 °
Fill Material	125 pcf	200 psf	19 °
Fill Material	125 pcf	200 psf	19 °
Clay Dike	125 pcf	200 psf	19 °
Native Clay	125 pcf	200 psi 290 psf	19 19 °

Factor of Safety: 1.0

Horizontal Sesmic Coefficient Kh = 0.138 g 2500-year Return Period Event



Section J - Disposal Area 5 Stilling Basin Colbert Fossil Plant Tuscumbia, Alabama

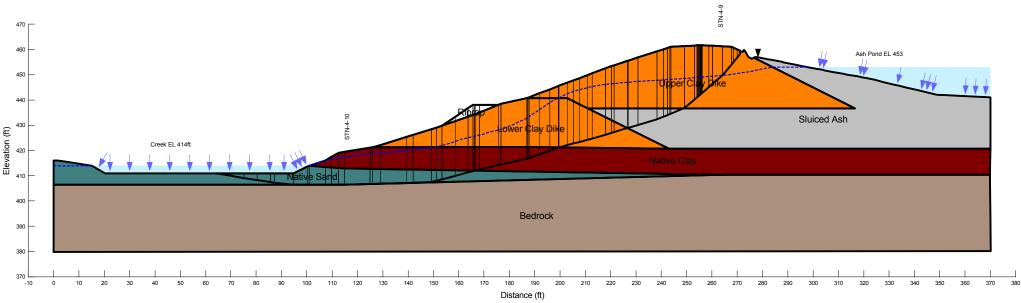
Note: The results and analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Material Type	Unit Weight	Cohesion	Friction Angle
Native Clay	125 pcf	290 psf	19 °
Pond Dike	125 pcf	200 psf	19 °

Date of Assessment - 11/28/2011

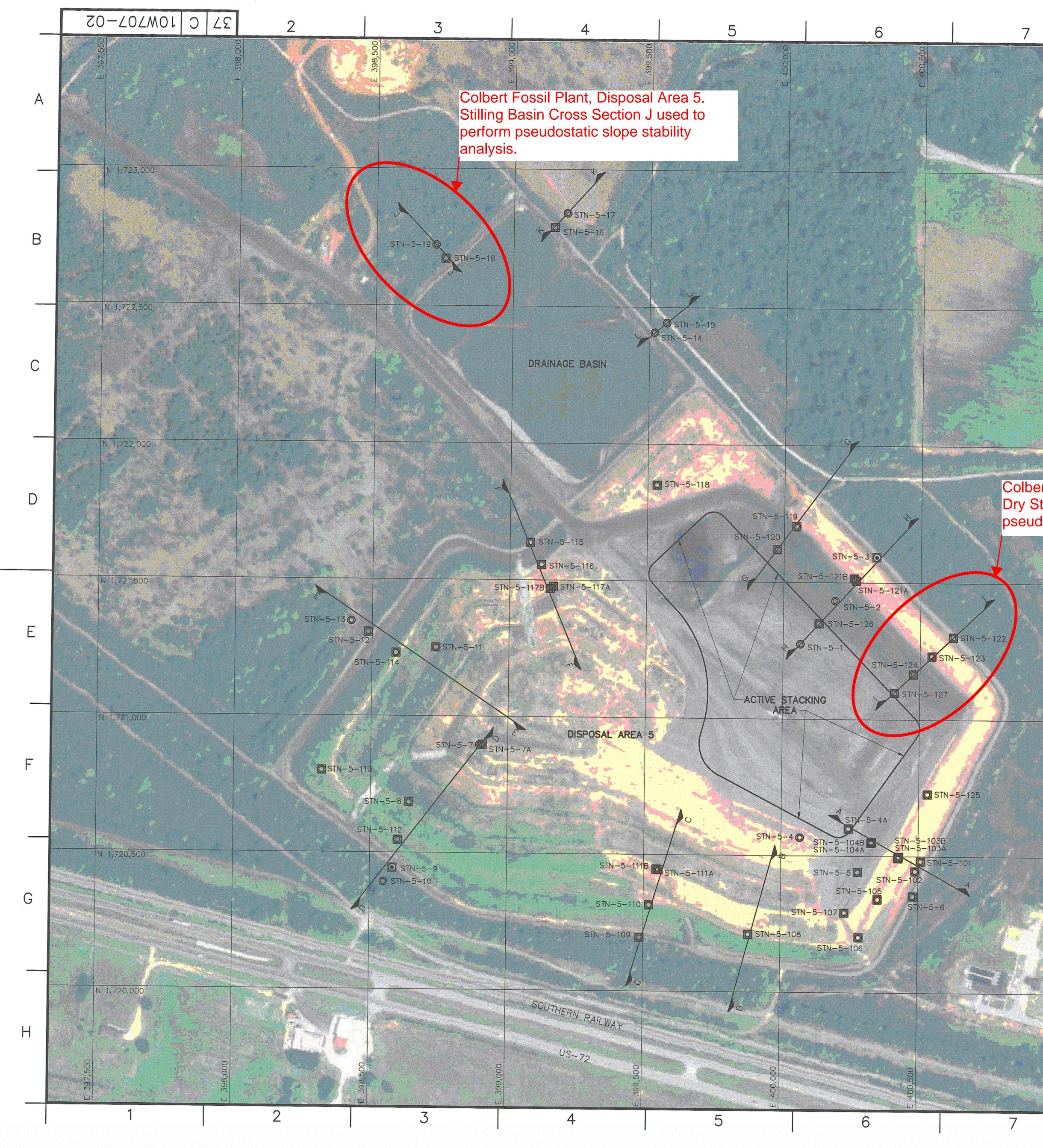
Section D - Ash Pond 4 Colbert Fossil Plant Tennessee Valley Authority

Note:


The results of the analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

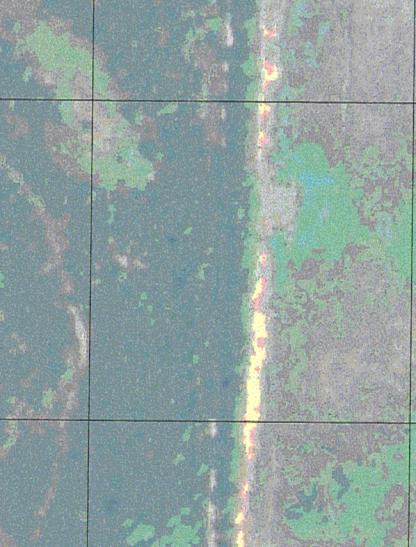
Additional remediation measures taken from URS plans dated 05/20/2010.

Material Type	Unit Weight	Cohesion	Friction Angle
Native Clay	129 pcf	700 psf	14 °
Upper Clay Dike	126 pcf	750 psf	12 °
Lower Clay Dike	127 pcf	400 psf	14 °
Sluiced Ash	85 pcf	400 psf	10 °
Native Sand	110 pcf	0 psf	30 °


Factor of Safety: 1.0

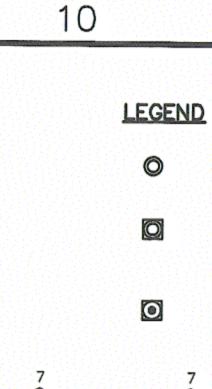
Horizontal Seismic Coefficient Kh = 0.138 g 2500-year Return Period Event

Date of Assessment - 11/4/2011



Q

Colbert Fossil Plant, Disposal Area 5. Dry Stack Cross Section I used to perform pseudostatic slope stability analysis.


FOR INFORMATION ONLY This Record Drawing which has been previously submitted to TVA is provided for Information Only.

N 1,721,00

Boring $\begin{array}{c} {\rm STN}-5-1\\ {\rm STN}-5-2\\ {\rm STN}-5-3\\ {\rm STN}-5-4\\ {\rm STN}-5-4\\ {\rm STN}-5-4\\ {\rm STN}-5-5\\ {\rm STN}-5-6\\ {\rm STN}-5-7\\ {\rm STN}-5-10\\ {\rm STN}-5-10\\ {\rm STN}-5-12\\ {\rm STN}-5-12\\ {\rm STN}-5-16\\ {\rm STN}-5-16\\ {\rm STN}-5-16\\ {\rm STN}-5-16\\ {\rm STN}-5-16\\ {\rm STN}-5-10\\ {\rm STN}-5-$ В

Soil Boring With Continuous Standard Penetration Tests And/Or Shelby Tube Sampling

Soil Boring With Continuous Standard Penetration Tests And/Or Shelby Tube Piston Sampling (Piezometer Installed)

Soil Boring With Continuous Standard Penetration Tests And/or Shelby Tube Sampling, Rock Core, And Piezometer Installed

Cross Section

NorthingEeostingElev. (ft.)11,721,274.40400,063.00552.9121,721,432.78400,188.85529.1931,721,592.79400,338.67487.5441,720,667.21400,067.66559.984A1,720,600.17400,279.90529.7151,720,353.73400,481.02488.0671,720,897.20398,906.71565.3471,720,393.13398,549.64459.6571,720,393.13398,549.64459.6511,721,306.21398,424.36452.2641,722,443.72399,562.30462.8561,722,788.34399,195.10458.6071,720,445.72399,195.10458.6081,722,671.43398,752.90472.1891,722,721.58398,717.11453.41011,720,493.35400,429.29509.48021,720,445.72400,429.29509.4803A1,720,493.35400,330.04530.75051,720,315.43399,545.11453.26071,720,202.10400,232.46527.19081,720,315.43399,553.23509.29091,720,315.43399,553.23509.29091,720,315.43399,553.23509.29091,720,315.43399,553.23509.29111,721,636.94399,533.21499.18101,720,546.53398,601.38497.91131,720,646.53 <t< th=""><th colspan="9">BORING LOCATION TABLE</th></t<>	BORING LOCATION TABLE								
2 1,721,432.78 400,188.85 529.19 3 1,721,592.79 400,338.67 487.54 4 1,720,567.21 400,067.66 559.98 4A 1,720,667.21 400,244.82 550.70 5 1,720,353.73 400,481.02 488.06 7 1,720,895.57 398,896.12 564.52 7A 1,720,897.20 398,906.71 565.34 3 1,720,684.92 398,549.64 459.65 1 1,721,251.58 398,733.51 515.53 2 1,721,306.21 398,486.91 477.77 3 1,722,443.72 399,518.43 475.88 5 1,722,783.34 399,149.51 475.84 7 1,720,482.33 400,509.25 486.97 02 1,720,493.35 400,429.29 509.48 03A 1,720,493.35 400,420.29 509.48 04A 1,720,493.35 400,422.29 509.48 04A 1,720,493.35 400,422.99 509.48 <		Northing	Eeasting	Elev. (ft.)					
	3 4 4 5 5 7 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 8 9 0 1 2 3 8 9 0 1 2 3 8 9 0 1 2 3 8 9 0 1 2 3 8 9 0 1 2 3 8 9 0 1 2 3 8 9 0 2 3 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 1 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 8 9 0 1 1 1 8 9 0 1 1 1 8 9 0 1 1 1 8 9 0 1 1 1 8 9 0 1 1 1 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,721,432.78 1,721,592.79 1,720,567.21 1,720,600.17 1,720,441.17 1,720,895.57 1,720,895.57 1,720,897.20 1,720,684.92 1,720,444.22 1,720,393.13 1,721,251.58 1,721,306.21 1,722,407.30 1,722,407.30 1,722,443.72 1,722,788.34 1,722,721.58 1,720,445.72 1,720,445.72 1,720,445.72 1,720,493.35 1,720,498.42 1,720,551.74 1,720,202.10 1,720,292.02 1,720,211.06 1,720,292.02 1,720,211.06 1,720,315.43 1,720,445.15 1,720,445.15 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,445.51 1,720,546.53 1,720,445.51 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,720,546.53 1,721,557.19 1,721,636.94 1,721,557.19 1,721,636.94 1,721,506.28 1,721,514.55 1,721,301.29 1,721,231.75 1,721,301.29 1,721,231.75 1,721,301.29 1,721,231.75 1,721,301.29 1,721,231.75	400,188.85 400,338.67 400,067.66 400,244.82 400,279.90 400,481.02 398,896.12 398,906.71 398,641.15 398,582.58 398,549.64 398,733.51 398,424.36 399,518.43 399,562.30 399,149.51 399,195.10 398,752.90 398,717.11 400,509.25 400,428.84 400,429.29 400,328.22 400,330.04 400,353.20 400,284.88 400,232.46 399,882.93 399,486.17 399,519.59 399,553.23 399,486.17 399,519.59 399,553.23 399,486.17 399,553.23 399,486.17 399,519.59 399,553.23 399,486.17 399,519.59 399,553.23 399,486.17 399,519.59 399,553.23 399,486.17 399,519.59 399,553.23 399,486.17 399,553.23 399,486.17 399,553.23 399,486.17 399,553.23 399,486.17 399,553.23 399,486.17 399,553.23 399,486.17 399,553.23 399,486.17 399,553.23 399,545.11 398,601.38 398,321.28 399,553.23 399,545.11 398,587.74 399,553.23 30,555,5555,55555555555555555555555555	529.19 487.54 559.98 550.70 529.71 488.06 564.52 565.34 517.92 480.52 459.65 515.53 477.77 452.26 475.88 462.85 475.84 458.60 472.18 453.41 486.97 486.80 508.95 509.48 530.46 530.75 507.40 507.40 507.40 507.40 509.29 481.82 509.44 529.32 529.34 497.91 497.91 499.24 497.51 477.77 491.58 512.79 512.84 497.91 497.51 477.77 491.58 512.79 512.84 499.18 504.54 508.23 507.94 486.86 508.11 527.23 507.03 554.68					

RECORD DRAWING

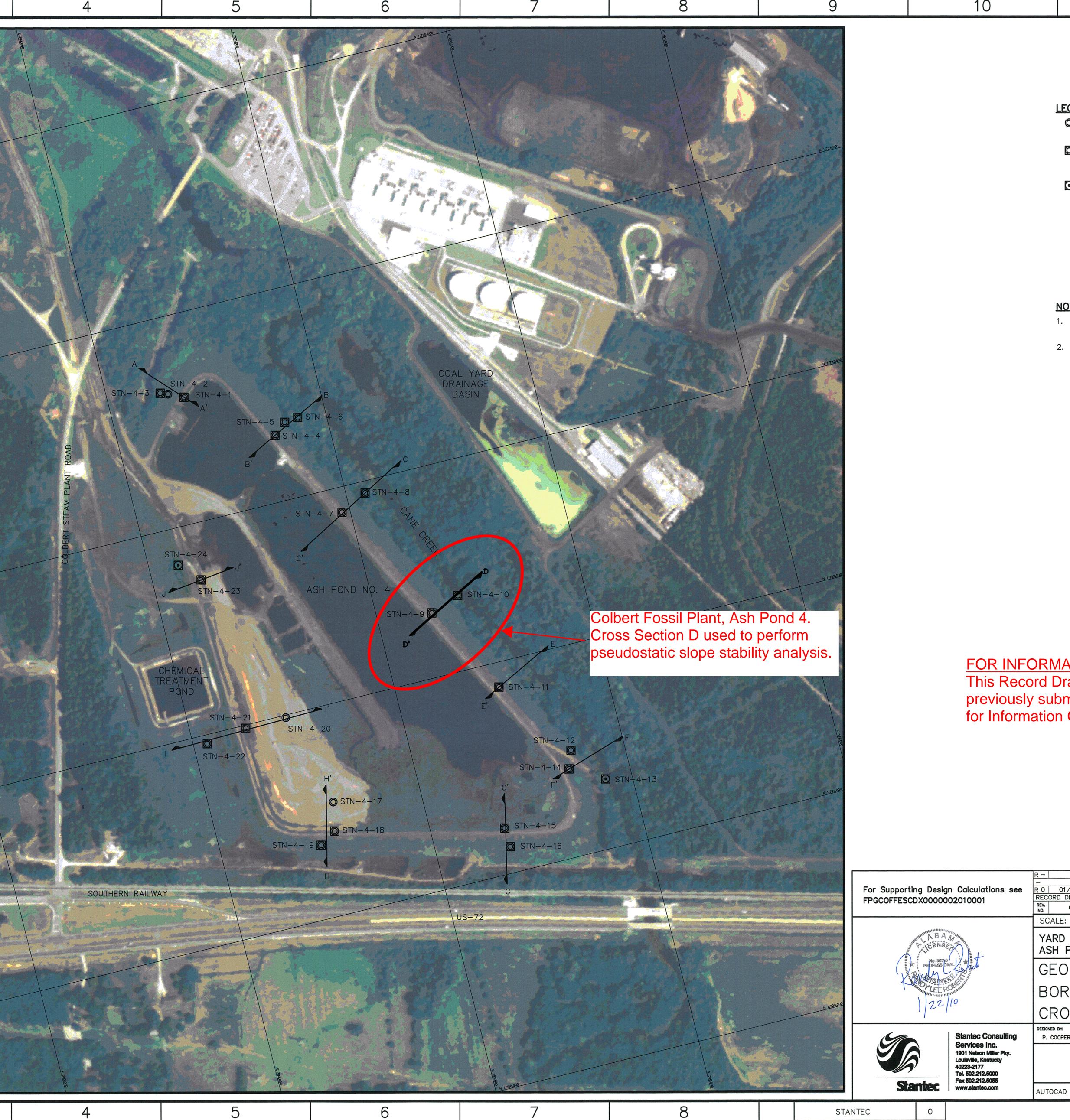
75 0 150 300 FEET GRAPHIC SCALE: 1"=150'

- R 0 03/24/10 PC RP PC RLR RLR RLR TJ DISCIPL	R	-												
RECORD DRAWING REV. DATE DSON DRWN CHKO SUPV RVWD APPO ISSD PROJECT AS CONST REV SCALE: 1"=150' EXCEPT AS NOTED YARD DISPOSAL AREA NO. 5 GEOTECHNICAL EXPLORATION BORING AND STABILITY CROSS SECTION PLAN DESIGNED BY: DRAWN BY: CHECKED BY: APPROVED BY: ISSUED BY: P. COOPER R. PETTY P. COOPER R. ROBERTS R. ROBERTS T. JOHNSON COLBERT FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING	_					-	-	-	-	-	-	-	-	
RECORD DRAWING REV. DATE DSON DRWN CHKO SUPV RVWD APPO ISSD PROJECT AS CONST REV SCALE: 1"=150' EXCEPT AS NOTED YARD DISPOSAL AREA NO. 5 GEOTECHNICAL EXPLORATION BORING AND STABILITY CROSS SECTION PLAN DESIGNED BY: DRAWN BY: CHECKED BY: APPROVED BY: ISSUED BY: P. COOPER R. PETTY P. COOPER R. ROBERTS R. ROBERTS T. JOHNSON COLBERT FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING	RO	03/24/1	10	PC	RP	PC	PIP	PIP	PID	TI		r		
NO. UNITE DEAN DRAW CHEO SUPPORT AND APPO ISSO PROJECT AS CONST REV 2 SCALE: 1"=150' EXCEPT AS NOTED 3 YARD DISPOSAL AREA NO. 5 GEOTECHNICAL EXPLORATION BORING AND STABILITY CROSS SECTION PLAN DESIGNED BY: CHECKED BY: REVENED BY: REVENED BY: ISSUED BY: P. COOPER R. PETTY P. COOPER R. ROBERTS R. ROBERTS R. ROBERTS T. JOHNSON COLBERT FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING							NLN	INER .	KLK	10			-	DISCIPLIN
SCALE: 1"=150' YARD DISPOSAL AREA NO. 5 GEOTECHNICAL EXPLORATION BORING AND STABILITY CROSS SECTION PLAN DESIGNED BY: P. CCOPER R. PETTY P. COOPER R. PETTY P. COOPER R. ROBERTS R. ROBER		DATE		DSGN	DRWN	CHKD	SUPV	RVWD	APPD	ISSD	PROJECT	AS CONST	REV	1
YARD DISPOSAL AREA NO. 5 GEOTECHNICAL EXPLORATION BORING AND STABILITY CROSS SECTION PLAN DESIGNED BY: P. CCOPER R. PETTY P. COOPER R. PETTY COLBERT FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING	SC	SCALE: 1"=150' EXCEPT AS NOTED											3	
BORING AND STABILITY CROSS SECTION PLAN DESIGNED BY: DRAWN BY: CHECKED BY: SUPERVISED BY: REVIEWED BY: APPROVED BY: ISSUED BY: P. CCOPER R. PETTY P. COOPER R. ROBERTS R. ROBERTS R. ROBERTS T. JOHNSON COLBERT FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING	YARD									Ľ				
CROSS SECTION PLAN DESIGNED BY: DRAWN BY: CHECKED BY: SUPERVISED BY: REVIEWED BY: APPROVED BY: ISSUED BY: P. CCOPER R. PETTY P. COOPER R. ROBERTS R. ROBERTS R. ROBERTS T. JOHNSON COLBERT FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING	G	EOTE	CF	INI	CAL	. E	XPL	OR	ATI	ЛС				
DESIGNED BY: P. CCOPER R. PETTY P. COOPER R. ROBERTS R. ROBERTS R. ROBERTS R. ROBERTS T. JOHNSON COLBERT FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING	В	ORIN	G	AN	DS	STA	BIL	ITY						
P. CCOPER R. PETTY P. COOPER R. ROBERTS R. ROBERTS R. ROBERTS T. JOHNSON COLBERT FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING	С	ROSS	SS	SEC	TIC	N	PLA	N						
TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING														
AUTOCAD R 2000 03/24/10 37 C 10W707-02 R 0	TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING													
	AUTO	DCAD R 20	000		10 37	'C	1(DW7	707	-02	2	R O		

PLOT FACTOR:XX

W_TVA

	6-02	OZMOL (2 L C	2				
		BORING LOCATION TABLE						
	BORING	NORTHING	EASTING	ELEVATION				
А	STN-4-1	1,723,599.52	394,359.89	460.2				
	STN-4-2	1,723,632.72	394,289.32	439.4				
	STN-4-3	1,723,645.94	394,253.91	427.3				
	STN-4-4	1,723,316.42	394,738.76	460.4				
	STN-4-5	1,723,366.01	394,798.52	439.5				
	STN-4-6	1,723,373.16	394,864.54	419.8				
	STN-4-7	1,722,880.08	394,960.81	460.8				
	STN-4-8	1,722,943.49	395,089.90	421.6				
	STN-4-9	1,722,306.36	395,260.37	461.2				
В	STN-4-10	1,722,357.09	395,401.10	420.9				
	STN-4-11	1,721,882.96	395,485.31	461.3				
	STN-4-12	1,721,504.87	395,746.27	446.2				
	STN-4-13	1,721,330.83	395,874.15	425.3				
	STN-4-14	1,721,420.08	395,715.53	461.9				
	STN-4-15	1,721,219.13	395,347.89	460.5				
	STN-4-16	1,721,126.23	395,351.96	435.1				
С	STN-4-17	1,721,539.59	394,582.90	476.8				
	STN-4-18	1,721,402.10	394,555.64	461.1				
	STN-4-19	1,721,352.01	394,475.66	440.3				
	STN-4-20	1,721,987.93	394,461.02	482.3				
	STN-4-21	1,721,985.14	394,262.71	460.2				
	STN-4-22	1,721,957.70	394,065.63	438.0				
	STN-4-23	1,722,728.47	394,227.94	461.1				
	STN-4-24	1,722,823.19	394,138.84	444.5				
D								
E								


F

G

Н

2

3

FOR INFORMATION ONLY This Record Drawing which has been previously submitted to TVA is provided for Information Only.

TASK COMPLETED BY:

REV NO.

	11	12	
ļ	EGEND Soil Boring With Continuous Sta Tests And/Or Shelby Tube San		A
	Soil Boring With Continuous Sta Tests And/Or Shelby Tube Pist Piezometer Installation	andard Penetration	
	Soil Boring With Continuous Sta Tests And/or Shelby Tube Sam And Piezometer Installation		В
	NOTES 1. Topographic and survey information the Teppersee Valley Authority	ion provided by	
:	the Tennessee Valley Authority. 2. The Boring Logs And Related Info On This Drawing Depict Approxim Conditions Only At The Specific B Noted And At The Time Of Drillir Other Locations May Differ From At The Boring Locations. Also, T Time May Result In A Change In Conditions At The Boring Locatio Correlations Shown Between Borin Based On Straight Line Interpolat Conditions Between Borings Are	nate Subsurface Boring Locations ng. Conditions At Those Occurring he Passage Of The Subsurface ons. Any ngs Are Generally tion. Actual	C
	Conditions Between Borings Are Differ From Those Shown.	Unknown And May	

RECORD DRAWING

100 0 200 4 GRAPHIC SCALE: 1"=200' 400 FEET

२ −	-	-	-	-	-	-	-	-	-	-	-	
-												
20	01/22/10	PC	SB	PC	RLR	RLR	RLR	TJ	-	-	-	DISCIPLIN
REC	ORD DRAWING											INTERFAC
REV.	DATE	DSGN	DRWN	СНКД	SUPV	RVWD	APPD	ISSD	PROJECT	AS CONST	REV CD	1
NO.	DATE	Deen		Grade	00.1		7410	1000	ID		CD	2
50	ALE: 1"=200)'							EXCEPT /	AS NOT	FD	3
- 50	ALL. 1 -200	/									_U	4

ASH POND 4								
GEOTECHNICAL EXPLORATION								
BORIN	١G	AN	DS	TA	BILIT	Ý		
CROSS-SECTION PLAN								
DESIGNED BY:	DRAWN		CHECKED BY		SUPERVISED BY:	REVIEWED BY:	APPROVED BY:	ISSUED BY:
P. COOPER	S. BRA	ADSHAW	P. COOF		R. ROBERTS	R. ROBERTS	R. ROBERTS	T. JOHNSON
COLBERT FOSSIL PLANT								
TENNESSEE VALLEY AUTHORITY								
FOSSIL AND HYDRO ENGINEERING								
AUTOCAD R	2000	DATE 01/22/	10 37	С	100	/706-	02	R O

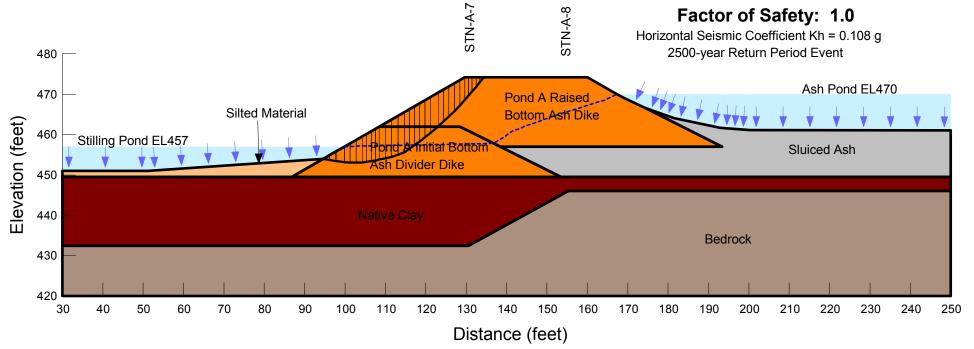
PLOT FACTOR:XX

W_TVA

C.A.D. DRAWING DO NOT ALTER MANUALLY

Ε

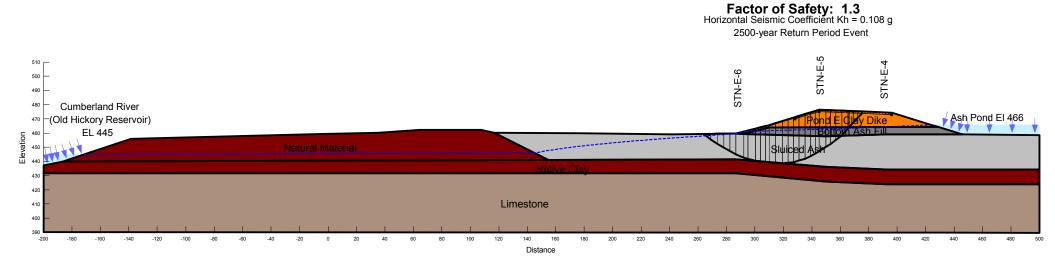
Gallatin Fossil Plant (GAF)


Section K - Ash Pond A Gallatin Fossil Plant Gallatin, Tennessee

Material Type	Unit Weight	Cohesion	Friction Angle
Pond A Initial Bottom Ash Divider Dike	105 pcf	0 psf	33 °
Pond A Raised Bottom Ash Dike	105 pcf	0 psf	34 °
Sluiced Ash	85 pcf	400 psf	10 °
Native Clay	125 pcf	550 psf	13 °
Silted Material	85 pcf	400 psf	10 °

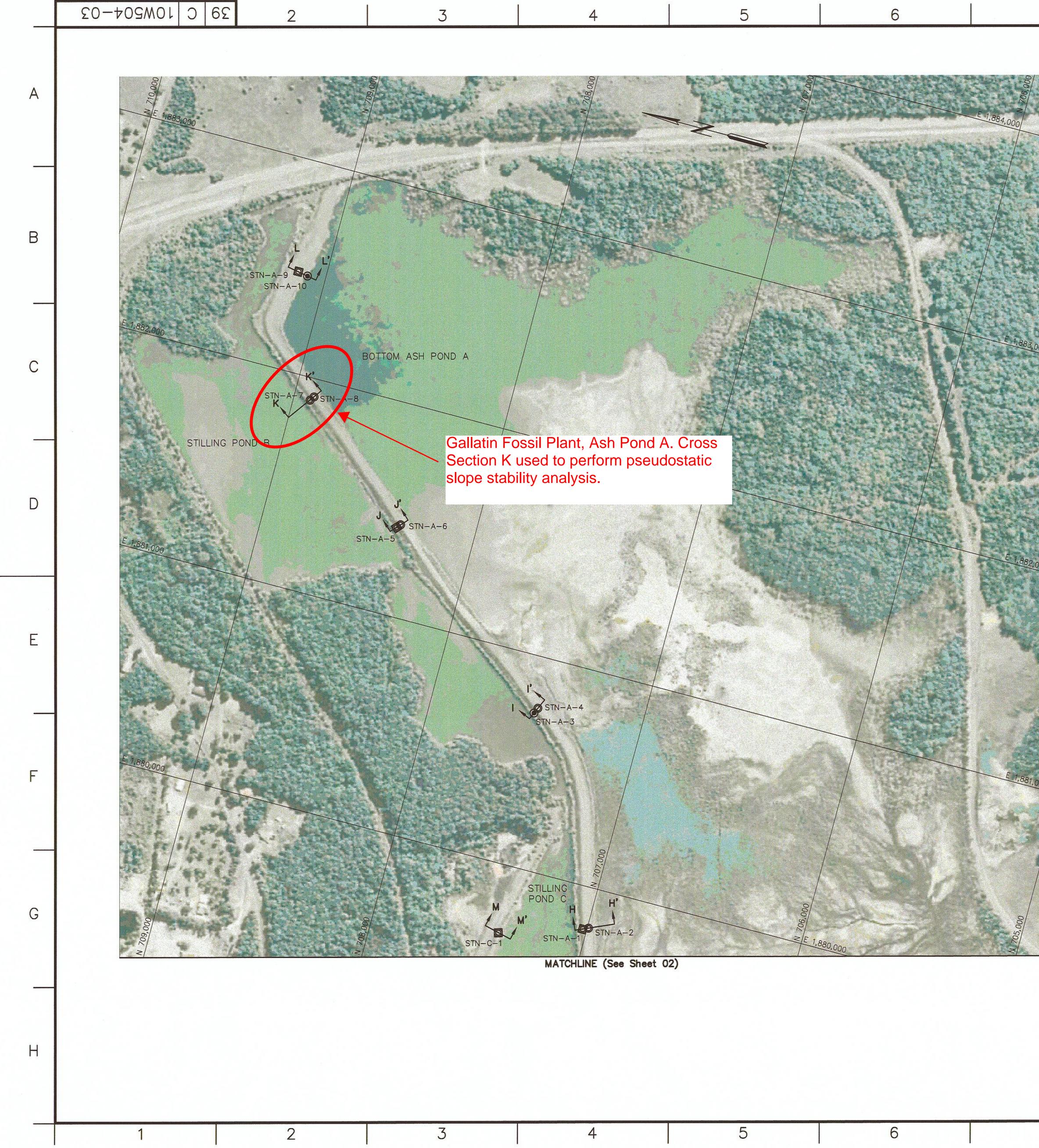
The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Section B - Ash Pond E Gallatin Fossil Plant Gallatin, Tennessee

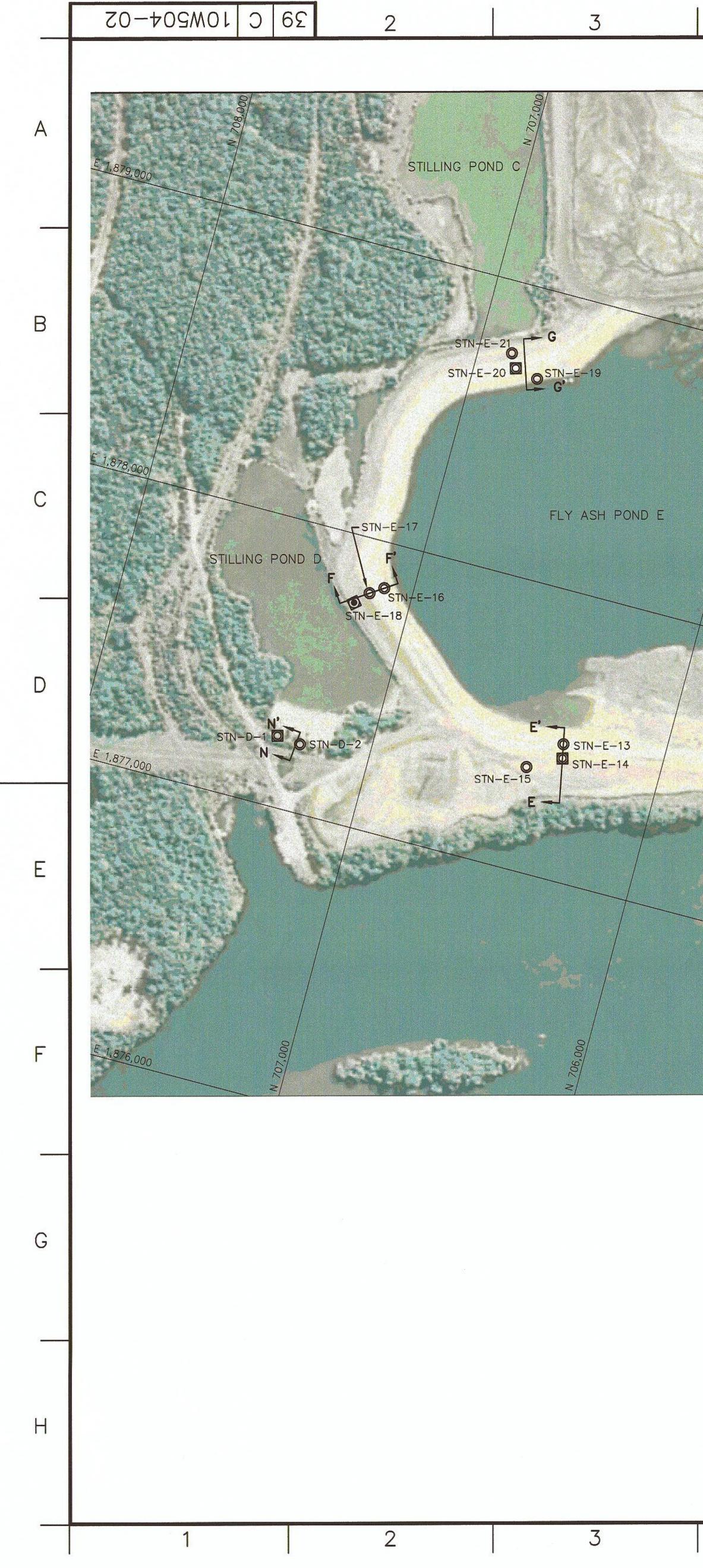

Note:

Unit Weight	Cohesion	Friction And

Stantec


The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

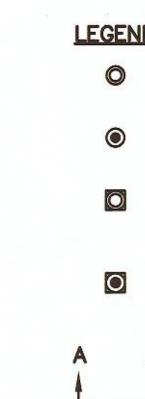
Material Type	Unit Weight	Cohesion	Friction Angle
Pond E Clay Dike	125 pcf	400 psf	15 °
Bottom Ash Fill	100 pcf	0 psf	34 °
Sluiced Ash	85 pcf	400 psf	10 °
Native Clay	125 pcf	550 psf	13 °

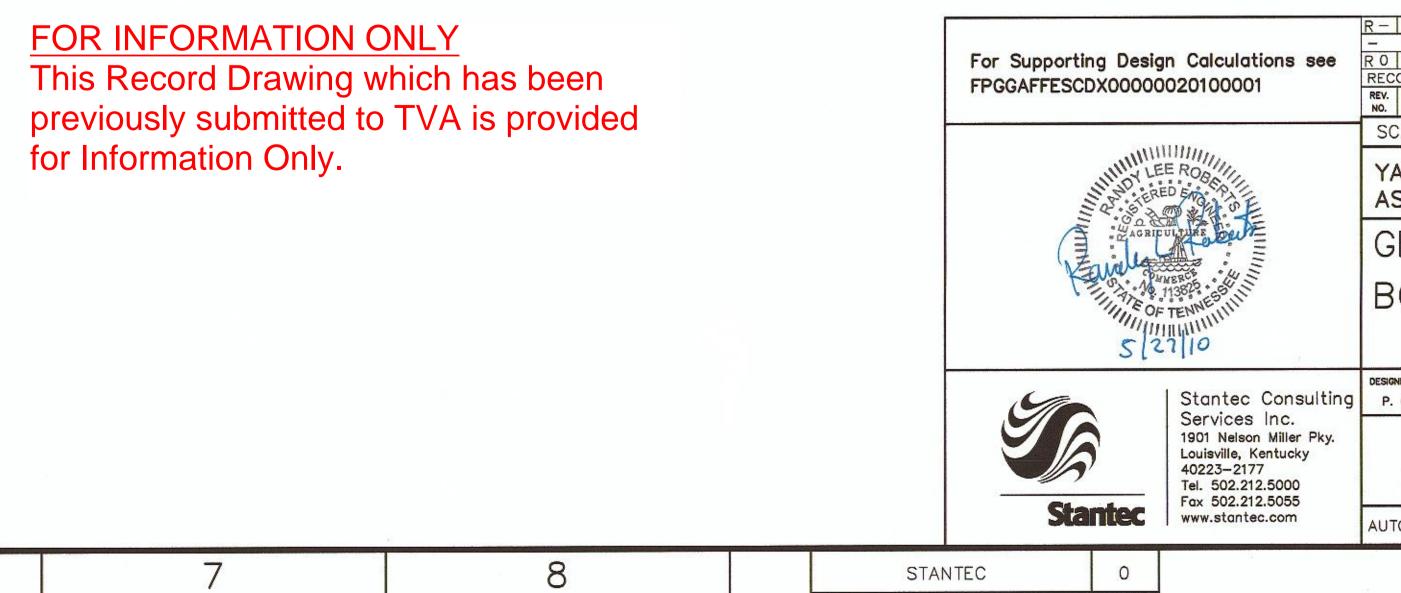

Date of Assessment - 11/4/2011

Project No. 175551015

·					10			
<u> </u>	5.Í							А
	8							
						0	Soil Boring With Continuous Standard Penetration Tests And/Or Shelby Tube Piston Sampling	
R						•	Soil Boring With Continuous Standard Penetration Tests And/Or Shelby Tube Piston Sampling And Rock Core Soil Boring With Continuous Standard Penetration Tests	
	22						And/Or Shelby Tube Piston Sampling And Piezometer Location	В
						A /	Soil Boring With Continuous Standard Penetration Tests And/Or Shelby Tube Piston Sampling And Rock Core And Piezometer Location A'	D
						<u>+</u>	Cross Section	
383,000								
							 NOTES 1. Topographic and survey information provided by the Tennessee Valley Authority. 	С
							2. The boring logs and related information shown on this drawing depict approximate subsurface	
							conditions only at the specific boring locations noted and at the time of drilling. Conditions at other locations may differ from those occurring at	
							the boring locations. Also, the passage of time may result in a change in the subsurface conditions at the boring locations. Any correlations shown between borings are generally	
							based on straight line interpolation. Actual conditions between borings are unknown and may differ from those shown.	D
								D
882,000								
							BORING LOCATION TABLE	Е
							BORING NORTHING EASTING ELEVATION (ft.) STN-A-1 707,019.68 1,879,799.57 472.8	
							STN-A-2 706,994.16 1,879,810.94 473.3 STN-A-3 707,510.75 1,880,731.90 472.9 STN-A-4 707,498.65 1.880,758.47 473.8	
							STN-A-6 708,353.42 1,881,433.71 474.0 STN-A-7 708,921.58 1,881,894.55 474.5	
							STN-A-9 709,132.64 1,882,470.74 472.4 9 STN-A-10 709,085.67 1,882,461.16 474.1 9 STN-C-1 707,402.48 1.879,680.01 462.0 9	
881.000		FOR INFC	RMATION	I ONLY			STIN-0-1 707, 402.40 1,073,000.01 402.0	F
		This Reco previously	rd Drawing	y which ha			RECORD DRAWING	
Sig.		for Informa			provided		RECORD DRAWING	
							100 0 200 400 FEET US	
						<u>R</u> -	GRAPHIC SCALE: 1"=200'	
3					ng Design Calculation 0X00000020100001	IS SEE R(RE RE	CORD DRAWING	DISCIPLINE INTERFACE
					NHILLEE ROBE		SCALE: 1'=200' EXCEPT AS NOTED	, , ,
				Dutiti	ACRICULTURE A DET		ASH POND/STILLING POND COMPLEX GEOTECHNICAL EXPLORATION	
		2		R	A MAMEROS		BORING LAYOUT	
					5 27 10		SIGNED BY: DRAWN BY: CHECKED BY: SUPERVISED BY: REVIEWED BY: APPROVED BY: ISSUED BY:	
				Yr.	Stantec Cons Services Inc. 1901 Nelson Miller	Pky.	P. COOPER R. PETTY P. COOPER R. ROBERTS R. ROBERTS R. ROBERTS T. JOHNSON GALLATIN FOSSIL PLANT	
					Louisville, Kentuck 40223-2177 Tel. 502.212.5000 Fax 502.212.5055		TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING	
7	8		STAN	ITEC	0	AU	UTOCAD R 2000 05/27/10 39 C IOW504-05 R 0 PLOT FACTOR:XX C.A.D. DRAWING	
	I U	1	TASK COMP		REV NO.		W_TVA DO NOT ALTER MANU	UALLY

BORING LOCATION TABLE							
BORING	NORTHING	EASTING	ELEVATION (ft.)				
STN-A-1 STN-A-2 STN-A-3 STN-A-4 STN-A-5 STN-A-6 STN-A-6 STN-A-7 STN-A-8 STN-A-9 STN-A-10	707,019.68 706,994.16 707,510.75 707,498.65 708,368.74 708,353.42 708,921.58 708,907.06 709,132.64	1,879,799.57 1,879,810.94 1,880,731.90 1,880,758.47 1,881,417.01 1,881,433.71 1,881,894.55 1,881,914.61 1,882,470.74 1,882,461.16	472.8 473.3 472.9 473.8 473.7 474.0 474.5 474.5 474.8 472.4 474.1				
STN-C-1	703,003.07	1,879,680.01	462.0				


STN-E-10 STN-E-11


STN-E-12

MATCHLINE (See Sheet 03)

7	8	9	10	11	12	
			LEGEND O	Soil Boring With Continuous And/Or Shelby Tube Piston	Standard Penetration Tests Sampling	A
		<u>E 1,880,000</u>		And/Or Shelby Tube Piston Soil Boring With Continuous And/Or Shelby Tube Piston Location Soil Boring With Continuous	Standard Penetration Tests	B
	STN-E-2- STN-E-1- STN-E-1- STN-E-3			 NOTES Topographic and survey in the Tennessee Valley Auth The boring logs and relate this drawing depict approx conditions only at the spenoted and at the time of other locations may differ the boring locations. Also, may result in a change in conditions at the boring location at t	nority. ed information shown on kimate subsurface ecific boring locations drilling. Conditions at from those occurring at the passage of time the subsurface	С
oss tic		<u>E 1,879,000</u>		correlations shown between based on straight line inte conditions between borings differ from those shown. BORING NORTHING E	ATION TABLE ASTING ELEVATION (ft.)	D
	STN-E-A B STN-E-5 STN-E-6	E 1.878,000		STN-D-2 707,245.18 1,87 STN-E-1 703,045.88 1,87 STN-E-2 703,007.37 1,87 STN-E-3 702,955.21 1,87 STN-E-4 702,820.82 1,87 STN-E-5 702,733.38 1,87 STN-E-6 702,733.38 1,87 STN-E-7 703,843.80 1,87 STN-E-8 703,835.47 1,87 STN-E-9 703,753.39 1,87 STN-E-10 704,870.32 1,87 STN-E-11 704,863.36 1,87 STN-E-13 706,353.41 1,87 STN-E-14 706,343.79 1,87 STN-E-15 706,458.09 1,87	77,246.92 460.8 $77,237.96$ 460.4 $79,000.10$ 474.1 $79,022.21$ 475.7 $79,046.66$ 459.6 $78,131.27$ 474.3 $78,111.48$ 476.1 $78,070.14$ 459.6 $77,971.87$ 475.1 $77,934.64$ 476.5 $77,876.25$ 451.8 $77,828.40$ 476.1 $77,754.46$ 455.3 $77,474.21$ 474.3 $77,364.00$ 463.4 $77,842.04$ 474.9	W504-02-R0.DWG
8		8		STN-E-17 707,146.54 1,8 STN-E-18 707,190.77 1,8 STN-E-19 706,774.43 1,8 STN-E-20 706,856.53 1,8	77,842.04 474.9 77,811.85 475.4 77,765.92 461.6 78,687.08 472.8 78,704.54 476.0 78,751.72 461.6	STEVEN DRAWING\REVO_RECORD\10W

TASK COMPLETED BY:

REV NO.

RECORD	DRAWING

			100	0	20	00	400	FEET		L DATE: C	V: \1755\ACT
			G	RAPHIC	SCALE:	1"=20	00'			DIG	N in
	-	- 1	-	-	-	-	-	-	-	-	-
0 05/27 ECORD DRA		PC	RP	PC	RLR	RLR	RLR	TJ	-	-	- DISCIPLIN
EV. DATE		DSGN	DRWN	СНКД	SUPV	RVWD	APPD	ISSD	PROJECT	AS CONST	REV 1 CD 2
SCALE: 1'	=200'				-				EXCEPT	AS NOT	ED 4
yard Ash po GEOT				and the second				ON			-
BORIN	١G	LA	YOl	JT							
SIGNED BY: P. COOPER	DRAWN BY	beneved a	CHECKED I P. CO	and the second second	SUPERVISE R. ROBI		REVIEWED	States of the	APPROVED BY: R. ROBERTS	ISSUED BY: T. JOHNSO	N
		TE	NNE	SSEE		LEY	PLAN AUTH	9 an Normana	ſΥ	1	1
UTOCAD R	2000	DATE 05/27/	10 3	9 C	1	OW	504	()2	RO	
					P	LOT F	ACTOR	:XX	(C.A.D. DRAV	VING

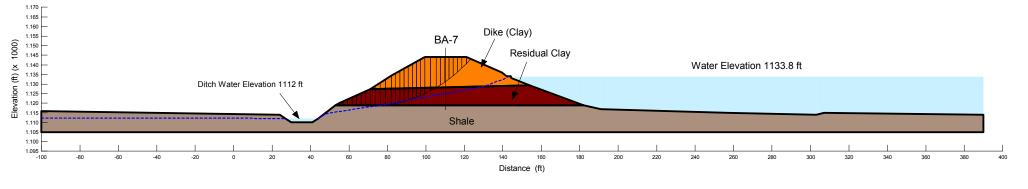
W_TVA

C.A.D. DRAWING DO NOT ALTER MANUALLY

John Sevier Fossil Plant (JSF)

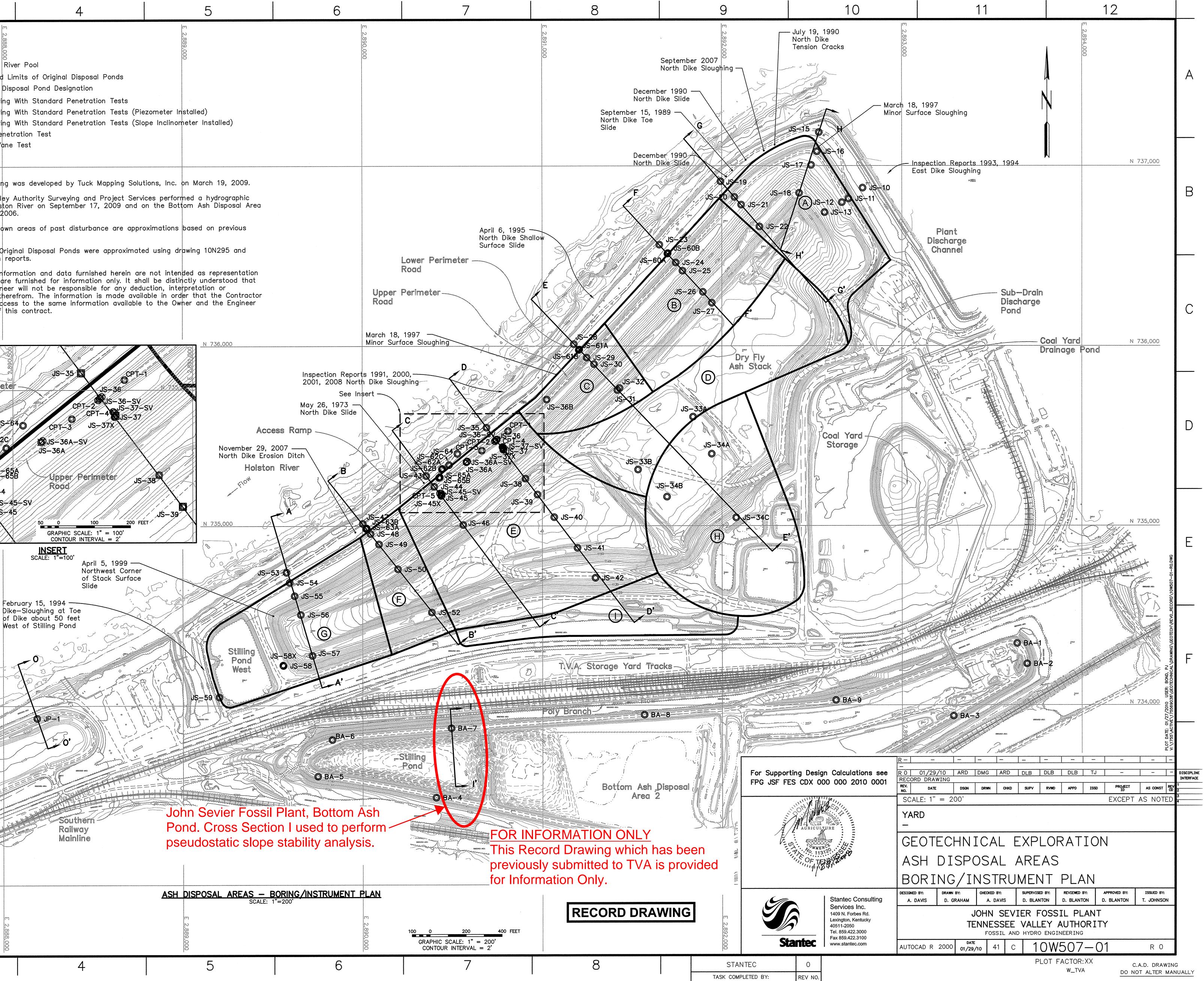
Section I - Bottom Ash Pond John Sevier Plant Rogersville, Tennessee

Note:


The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Unit Weight	Cohesion	Friction Angle
126 pcf	715 psf	10.6 °
120 pcf	1000 psf	11.6 °
N/A	N/A	N/A
	126 pcf 120 pcf	126 pcf 715 psf 120 pcf 1000 psf

Factor of Safety: 2.2


Horizontal Seismic Coefficient Kh = 0.115 g 2500-year Return Period Event

Date of Assessment - 11/4/2011

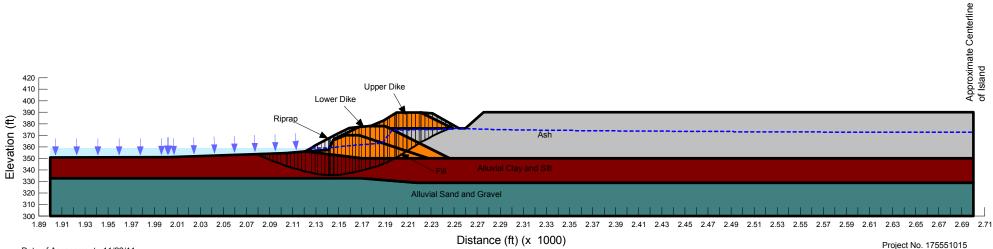
Project No. 175551015

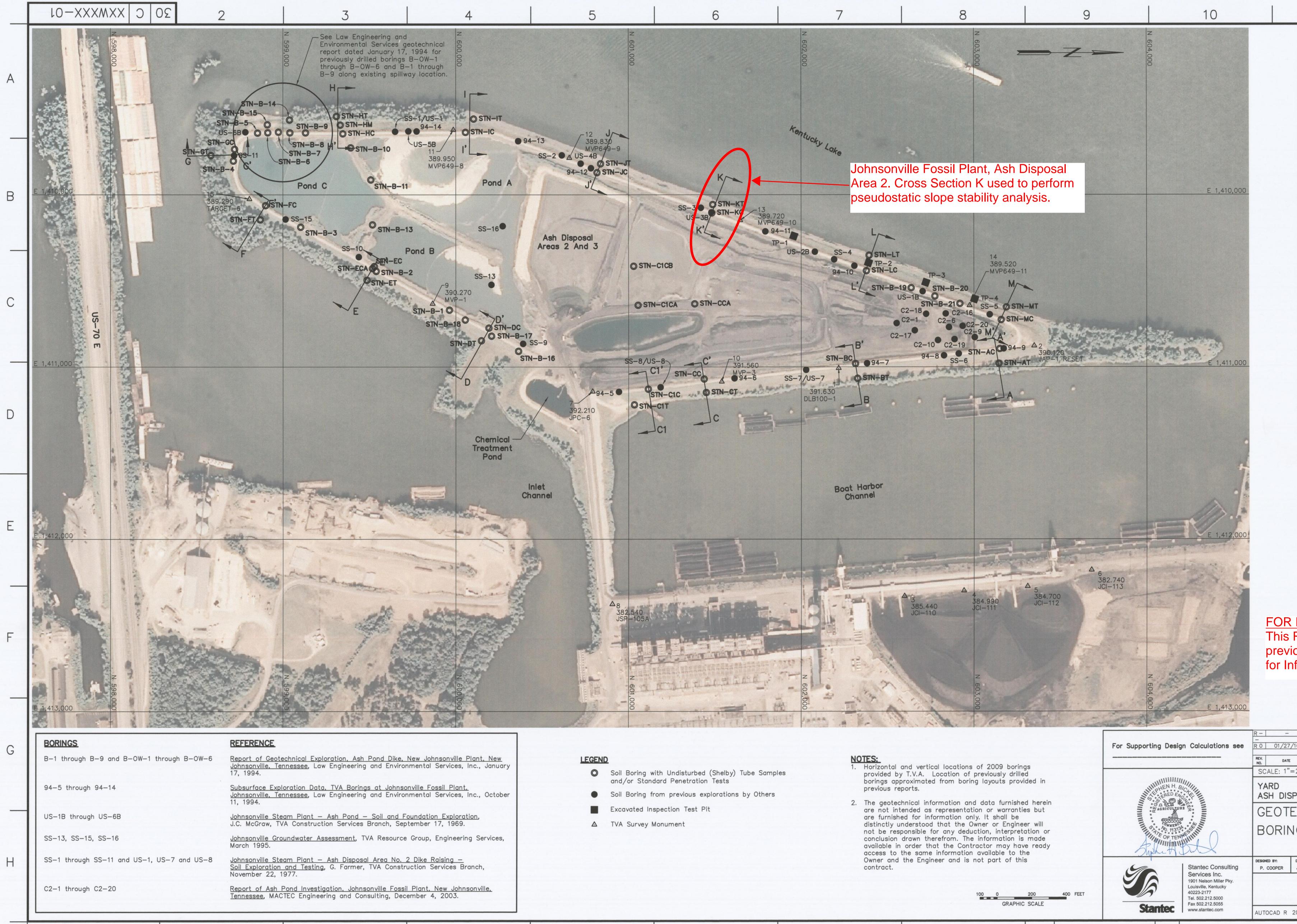
	10-209/	C 10M	14	2	3
		2,893,639.94	ELEV. (FT.) 1,145.4	BORING TYPE Sample / Piezometer	E 2,888,000 LEGEND
	BA-3 733,939.03 BA-4 733,486.11 BA-5 733,604.48	2,893,695.53 2,893,286.73 2,890,407.91 2,889,750.33	1,145.9 1,145.3 1,145.2 1,144.9	Sample / Piezometer Sample / Piezometer Sample Sample / Piezometer	LEGEND Marce 2 / 2 Marce 2
A	BA-7 733,872.97 BA-8 733,946.71 BA-9 734,027.41	2,889,830.63 2,890,492.40 2,891,566.83 2,892,632.01	1,145.1 1,144.3 1,145.2 1,144.7	Sample Sample Sample / Piezometer Sample	Assumed L A Original Dis
	JP-1 733,930.64 JP-2 733,703.71 JP-3 733,483.09 JP-4 733,323.27		1,105.4 1,105.7 1,105.8 1,105.6	Sample Sample Sample / Piezometer Sample / Piezometer	 Soil Boring Soil Boring Soil Boring Soil Boring
	JP-4A 733,325.38 JP-5 732,679.06 JP-6 732,862.78	2,886,401.23 2,886,045.57 2,886,526.80 2,892,782.32	1,105.3 1,104.5 1,106.3 1,085.0	Shelby Tubes Sample / Piezometer Sample / Piezometer Sample / Piezometer	Cone Pene
	JS-11 736,817.60 JS-12 736,796.96 JS-13 736,741.69	2,892,703.95 2,892,666.90 2,892,570.62	1,115.3 1,114.8 1,132.5	Sample/ Slope Inclinometer Sample / Piezometer Sample / Piezometer	
	JS-16 737,079.51 JS-17 737,004.19	2,892,539.85 2,892,528.69 2,892,496.33 2,892,429.18	1,084.1 1,115.7 1,114.5 1,136.3	Sample / Piezometer Sample/ Slope Inclinometer Sample / Piezometer Sample / Piezometer	NOTES: 1. Topographic mapping
В	JS-19 736,913.99 JS-20 736,826.84 JS-21 736,784.15	2,891,993.30 2,892,070.81 2,892,107.96 2,892,209.60	1,077.3 1,113.8 1,111.0 1,134.7	Sample / Piezometer Sample/ Slope Inclinometer Sample / Piezometer Sample / Piezometer	2. The Tennessee Valley survey on the Holstor 2 on January 12, 200
	<u>JS-23</u> 736,562.81 <u>JS-24</u> 736,463.59 JS-25 736,417.96	2,891,652.34 2,891,743.40 2,891,781.01	1,075.1 1,113.4 1,108.1	Sample / Piezometer Sample/ Slope Inclinometer Sample / Piezometer	3. The location of showr inspection reports.
	JS-27 736,239.87 JS-28 736,010.84	5 2,891,894.54 7 2,891,944.24 2,891,176.23 3 3 2,891,247.73	1,141.8 1,158.3 1,074.5 1,111.5	Sample / Slope Inclinometer Sample / Temporary Piezometer Sample / Piezometer Sample/ Slope Inclinometer	4. The limits of the Oric previous inspection re
	JS-30 735,899.72 JS-31 735,755.45 JS-32 735,766.70	2 2,891,288.23 5 2,891,418.56 0 2,891,431.00 9 2,891,839.21	1,105.6 1,151.1 1,150.6 1,152.4	Sample / Piezometer Sample/ Slope Inclinometer Temporary Piezometer Sample	5. The geotechnical info or warranties but are the Owner or Enginee
С	JS-33B 735,313.55 JS-34A 735,400.64 JS-34B 735,161.98	2,891,533.03 2,891,943.07 2,891,694.15 3 2,892,079.28	1,155.3 1,156.4 1,156.3 1,120.4	Sample Sample Sample Sample / Piezometer	conclusion drawn ther may have ready acce and is not part of th
Ũ	JS-35 735,547.59 JS-36 735,478.03 JS-36-SV 735,481.63	2,890,689.83 2,890,742.60 2,890,746.85	1,078.9 1,108.5 1,108.4	Sample / Piezometer Sample/ Slope Inclinometer Shear Vane Test/Shelby Tubes	
	JS-36A-SV 735,359.66 JS-36B 735,703.43	3 2,890,578.53 5 2,890,582.51 5 2,891,025.07 6 2,890,784.99	1,106.2 1,106.4 1,110.8 1,103.8	Sample/ Slope Inclinometer Shear Vane Test/Shelby Tubes Sample/ Slope Inclinometer Piezometer	· 1055
	JS-37-SV 735,436.98 JS-37X 735,425.46 JS-38 735,263.83	8 2,890,782.91 5 2,890,782.69 5 2,890,906.40 2,890,973.42	1,102.3 1,104.4 1,151.5 1,181.3	Shear Vane Test/Shelby Tubes Sample Sample/ Slope Inclinometer Sample / Temporary Piezometer	N 735,500 Lower Perimete
	JS-40 735,048.86 JS-41 734,877.81 JS-42 734,710.66	2,891,066.57 2,891,195.60 2,891,295.11 2,890,354.76	1,170.2 1,154.6 1,138.2 1,081.5	Sample Sample Sample / Piezometer Sample / Piezometer	Road
D	JS-44 735,219.55 JS-45 735,171.68 JS-45-SV 735,181.14	2,890,399.56 2,890,440.72 2,890,438.31	1,103.2 1,101.3 1,100.1	Sample/ Slope Inclinometer Piezometer Shear Vane Test/Shelby Tubes	May 26, 1973 North Dike Slide JS
	JS-46 735,006.11 JS-47 735,013.36	 2,890,438.03 2,890,560.28 2,890,001.65 2,890,044.99 	1,101.5 1,144.7 1,078.2 1,101.3	Sample Sample/ Slope Inclinometer Sample / Piezometer Sample/ Slope Inclinometer	JS62A
	JS-50 734,760.24 JS-52 734,518.95	 2,890,091.75 2,890,196.57 2,890,384.61 2,889,577.25 	1,098.8 1,138.7 1,136.8 1,081.4	Sample / Piezometer Sample / Piezometer Sample / Piezometer Sample / Piezometer	JS-62B JS-43 JS-6 JS-6 JS-6
	JS-54 734,685.87 JS-55 734,611.13 JS-56 734,506.50	7 2,889,594.68 2,889,621.92 0 2,889,656.35	1,100.2 1,097.4 1,131.0 1,130.1	Sample/ Slope Inclinometer Sample / Piezometer Sample / Piezometer Sample / Piezometer	Ramp JS-44 CPT-5 JS-45X
	JS-58 734,222.32 JS-58X 734,224.38 JS-59 734,047.10	2 2,889,720.99 2 2,889,559.16 3 2,889,557.53 0 2,889,202.69	1,100.2 1,100.1 1,099.3	Piezometer Sample Sample / Piezometer	JS-45X 03-
E	JS-61B 735,978.47	2,891,699.27 2,891,206.58 2,891,204.07	1,089.5 1089.5 1,089.7 1089.1	Sample Shelby Tubes / Piezometer Sample / Piezometer Shelby Tubes	
	JS-62B 735,316.23 JS-62C 735,339.49	2,890,444.05 2,890,442.25 2,890,481.47 2,890,020.63	1,090.0 1,090.0 1,088.2 1,089.4	Sample Shelby Tubes / Piezometer Sample Sample	
	JS-64 735,402.40 JS-65A 735,271.28	2,890,023.29 2,890,528.11 3 2,890,430.29 5 2,890,426.10	1089.4 1,082.3 1,095.1 1,094.7	Shelby Tubes / Piezometer Sample Sample / Shelby Tubes Shelby Tubes	Fe
	CPT-1 735,528.42 CPT-2 735,472.49 CPT-3 735,419.93	2 2,890,809.86 9 2,890,736.90 5 2,890,663.93 7 2,890,778.44	1,109.5 1,108.3 1,107.1 1,101.8	Cone Penetration Test Cone Penetration Test Cone Penetration Test Cone Penetration Test	Dik of We
		2,890,431.15	1,100.0	Cone Penetration Test	
F	E 2,886			E 2,887	
	N 734,000				J Q M3 Sago
	- N 707,000				
		ction Report		TK 3 CS	
\sim	1 1 1 1 1 1 1 1 1 1	ment of Ripro feet River Bar Stability			JP-2
G				19 JP = 3	N'
		UP-4A		MIND K'	
	100 100 100	O JP-4	Martin Street	isposal	
		1110		U U	Surface and the second se
Н	N 735,000	mon (The second secon	
	E 2.886.C	JP-6	J		וייז
	OUP-5			2,887,000	2,888,000
	1		Jund. 1	_آ ة 2	3
			ł		1

Johnsonville Fossil Plant (JOF)

Section K - Ash Disposal Area No. 2 Johnsonville Fossil Plant New Johnsonville, Tennessee

Note:


The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.


Material Type	Unit Weight (pcf)	Cohesion (psf)	Friction Angle
Upper Dike	125	521	16.2 °
Lower Dike	125	533	20.1 °
Ash	100	0	10 °
Fill	124	630	17.8 °
Alluvial Clay and Silt	124	714	17.8 °
Alluvial Sand and Gravel	120	0	30 °
Riprap	100	0	38 °

Horizontal Seismic Coefficient Kh = 0.254 g 2500-year Return Period Event

Date of Assessment - 11/22/11

5

8	STANTEC	0
1	TASK COMPLETED BY:	REV NO.

12

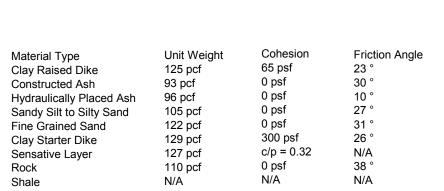
	BORING LO	CATION TAB	LE		
BORINO STN-A	the second s	EASTING 1,410,894.84	ELEV. (FT.) 391.4		٨
STN-A STN-B	T 603,144.12	1,410,980.20	<u>368.4</u> 391.5		A
STN-B STN-C1	T 602,326.17	and and a second se	369.8 391.5		
STN-C1 STN-C1	CA 601,054.92	1,410,641.77	<u>394.0</u> 398.4		
STN-C1	T 601,033.28	1,411,220.15	<u>365.5</u> 391.6		
STN-CC	CA 601,382.49	1,410,633.59	394.6		
STN-C STN-D	C 600,191.17	1,410,774.31	368.9 390.0		
STN-D STN-E	C 599,528.35	1,410,416.19	365.3 390.2		
STN-EC	T 599,486.09	1,410,496.27	390.2 363.8		R
STN-F	T 598,868.34		389.4 362.9		
STN-G	T 598,582.54	1,409,736.38 1,409,772.40	389.6 360.8		
STN-H	M 599,331.00	1,409,646.07 1,409,595.58	389.5 377.9		
STN-H STN-IO	600,055.90	1,409,545.23 1,409,637.66			
STN-I STN-J	C 600,817.61	1,409,560.28 1,409,871.68			
STN-J STN-K	C 601,482.90	1,409,820.33 1,410,105.77	389.8		
STN-K	C 602,377.53	1,410,056.92 1,410,442.03	377.6 389.9		
STN-L STN-M		1,410,352.26 1,410,726.95	366.3 390.6		С
STN-M *STN-B		1,410,653.44	365.6 390.6		
*STN-B *STN-B			390.2 390.2		
*STN-B *STN-B	-4		389.5 389.9		
*STN-B *STN-B	-6		389.9 390.1		
*STN-B- *STN-B-	-8		389.9 389.9		
*STN-B *STN-B-	-9		389.7 389.1		
*STN-B- *STN-B-	-11		389.6		
*STN-B- *STN-B-	-13		390.1 367.3		D
*STN-B- *STN-B-	-15		378.9 389.6		
*STN-B- *STN-B-	-17		<u>389.1</u> 391.0		. *
*STN-B-	-19		388.3		
*STN-B- *STN-B-			388.9 389.2		
BORIN TP-1 TP-2 TP-3 TP-4	601,957.34 602,389.71 602,721.20	EASTING 1,410,239.85 1,410,395.38 1,410,510.10 1,410,606.32	ELEV. (FT.) - - -	0_JFR\59008B-JOF-101-BL1.DWG	E
FOR INFOR This Record previously su for Informatio	Drawing v ubmitted to	which ha		ER: PE GEOTEC	F
		AWING		I PLOT DATE: 04/13/2010 US V:\1755\ACTIVE\175559008\	
R - R 0 01/27/10 PC JH		SHB SHB			DISCIPLINE
REV. DATE DSGN	DRWN CHKD SUPV	RVWD APPD	ISSD PROJECT	AS CONST REV	INTERFACE 1 2
SCALE: 1"=200'			EXCEPT	AS NOTED	3
YARD ASH DISPOSAL AR	EAS 2 AND	3			
GEOTECHNIC	AL EXPL	ORATIC	N		
BORING LAY	OUT				
DESIGNED BY: DRAWN BY: C P. COOPER J. MCKINNEY	HECKED BY: SUPERVIS P. COOPER S. BIC		APPROVED BY: S. BICKEL	ISSUED BY: T. JOHNSON	
JO	HNSONVILLE	FOSSIL PLA	ANT		
AUTOCAD R 2000 01/27/10	TOSSIL AND HYDR		-01	RO	
01/2//10		PLOT FACTOR			

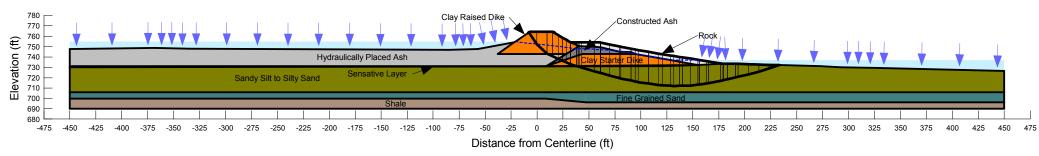
C.A.D. DRAWING DO NOT ALTER MANUALLY

PLOT FACTOR:XX

W_TVA

Kingston Fossil Plant (KIF)

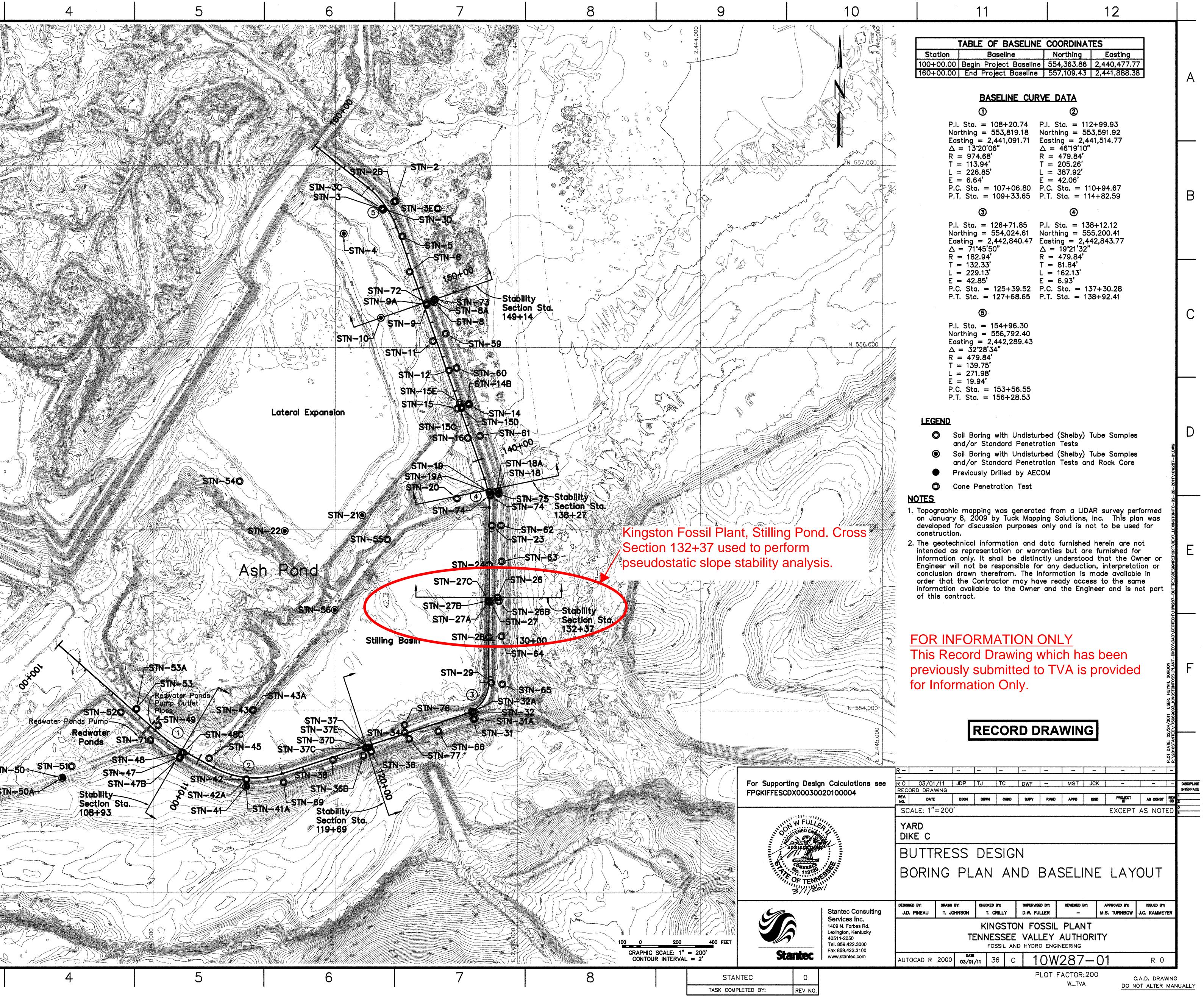

Section STA. 132+37 Kingston Fossil Plant Harriman, Tennessee


Note:

The results of the analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Factor of Safety: 1.0

Horizontal Seismic Coefficient Kh = 0.115 g 2500-year Return Period Event



Date of Assessment - 11/4/2011

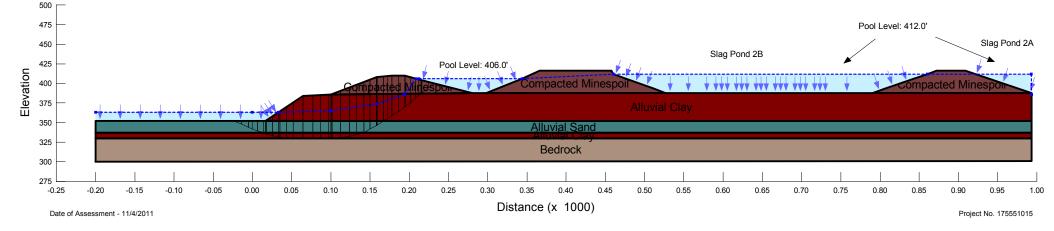
Project No 175551015

	10-	-7821	NOL	26 (2			3	
	BORING LOCATION TABLE					ING LOCA	ATION TAE	BLE		B
	Boring No.	Northing	Easting	Elevation (Feet)	Boring No.	Northing	Easting	Elevation (Feet)		
А	STN-2	556804.57	2442329.32	751.20	STN-36	553776.74	2442198.78	751.90		
	STN-2B STN-3	556801.29 556756.78	2442323.04 2442263.59	751.00 763.70	STN-36B STN-37	553753.47 553799.90	2442155.66 2442184.40	751.50 763.80		
	STN-3C STN-3D	556763.50 556762.50	2442257.42 2442258.42	763.80 763.80	STN-37C STN-37D	553798.81 553798.26	2442171.01 2442168.95	763.60 763.60		C C C
	STN-3E STN-4	556764.10 556625.56	2442559.45 2442047.01	763.80 763.30	STN-37E STN-38	553799.26 553730.83	2442183.40 2441988.70	763.80 764.10		
	STN-5 STN-6	556611.15 556416.17	2442365.31 2442407.10	764.90 763.40	STN-41 STN-41A	553583.10 553584.59	2441510.71 2441512.86	752.70 751.80	557.030	
	STN-8 STN-8A	556248.52 556254.96	2442540.30 2442535.17	752.20 751.70	STN-42 STN-42A	553623.48 553624.48	2441513.69 2441512.69	764.70 764.70		
В	STN-9	556233.82	2442499.72	764.80	STN-43	554004.68	2441548.50	765.90		
	STN-9A STN-10	556234.82 556162.76	2442499.81 2442251.63	764.80 765.00	STN-43A STN-45	554005.71 553740.50	2441549.61 2441308.40	765.90 763.90		
	STN-11 STN-12	556034.83 555873.09	2442535.05 2442622.48	763.20 765.10	STN-47 STN-47B	553747.39 553742.43	2441146.83 2441143.28	753.40 753.80		
	STN-14 STN-14B	555685.58 555690.29	2442733.21 2442730.41	753.10 753.00	STN-48 STN-48C	553773.29 553770.51	2441154.53 2441164.28	765.30 765.30	6	
	STN-15 STN-15C	555662.69 555671.50	2442667.52 2442690.88	763.70 765.30	STN-49 STN-50	553921.85 553631.96	2441024.39 2440496.85	763.10 741.60		
	STN-15D STN-15E	555665.72 555694.24	2442690.78 2442681.34	765.30 765.00	STN-50A STN-51	553632.98 553696.02	2440497.85 2440548.46	741.60 750.40		
С	STN-16	555501.40	2442725.94	764.50	STN-52	553992.98	2440817.40	753.20		
	STN-18 STN-18A	555204.87 555204.57	2442894.11 2442886.00	751.00 751.80	STN-53 STN-53A	554011.12 554012.14	2440902.46 2440904.05	763.90 763.90	556,000	
	STN-19 STN-19A	555204.68 555204.68	2442842.94 2442843.94	765.60 765.60	STN-54 STN-55	555263.94 554943.73	2441476.12 2442287.49	765.00 764.10		
	STN-20 STN-21	555168.84 555076.61	2442666.59 2442149.85	762.90 765.00	STN-56 STN-59	554555.61 556075.53	2441998.50 2442603.06	765.80 752.20		R
	STN-22 STN-23	554990.27 555020.22	2441723.40 2442857.46	765.00 764.70	STN-60 STN-61	5555886.92 555513.59	2442663.31 2442792.80	752.50 752.50	6/ 9	
	STN24 STN26	554803.45 554624.86	2442843.16 2442889.00	765.10 750.00	STN-62 STN-63	555020.69 554822.75	2442907.23 2442910.57	749.80 750.00		
D	STN-26B STN-27	554604.57 554601.77	2442896.12 2442850.67	751.00 765.10	STN-64 STN-65	554411.29 554147.51	2442911.08 2442915.09	749.40 748.60		
	STN-27A	554600.64	2442840.21	765.00	STN-66	553888.83	2442564.24	750.90		G
	STN-27B STN-27C	554606.18 554607.18	2442840.52 2442840.92	765.00 765.00	STN-69 STN-71	553607.58 553840.20	2441718.01 2440981.04	752.30 752.00		D. C.
	STN-28 STN-29	554406.25 554155.15	2442841.10 2442854.72	764.80 764.70	STN-72 STN-73	556243.56 556264.59	2442498.40 2442544.34	765.70 763.90		
	STN-31 STN-31A	553954.94 553960.30	2442758.22 2442764.66	749.50 749.70	STN-74 STN-74	555189.21 555184.59	2442848.63 2442849.41	766.20 766.20	1000 1000 1000 1000 1000 1000 1000 100	
Ε	STN-32 STN-32A	553994.90 553996.72	2442746.44 2442757.13	764.80 764.80	STN-75 STN-76	555194.95 553923.59	2442895.83 2442380.21	753.40 762.00		
	STN34	553882.51	2442381.24	764.70	STN-77	553847.01	2442405.85	754.90		
										0 000
										5.0
									02 M2 G	
								,	· Jo	
F									AS	No SI
									N 554,000	
										P.S.
									. 20	
										STA
G										ST
- - - -										725
										195
										5.
									3N 553,000	A T
H										
		1				2			3	
		F		1			ł		-	

Paradise Fossil Plant (PAF)

The results of analysis shown here are based on available subsurface information,

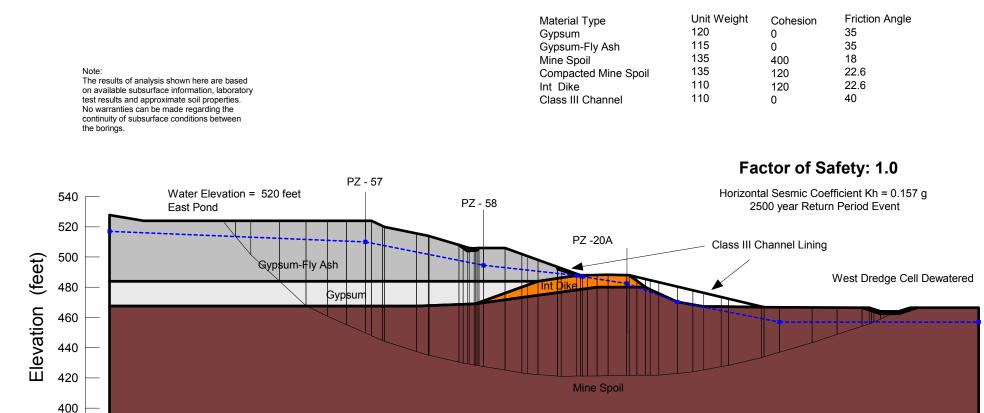
laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.


Section - Slag Pond 2B Paradise Fossil Plant Drakesboro, Kentucky

Note:

Material TypeUnit Weight CohesionFriction AngleCompacted Minespoil125 pcf120 psf22.6 °Alluvial Clay125 pcf975 psf12.9 °Alluvial Sand120 pcf1000 psf19.2 °

Factor of Safety: 1.1


Horizontal Sesmic Coefficient Kh = 0.157 g 2500 year Return Period Event

Section G - Scrubber Sludge Complex Paradise Fossil Plant Drakesboro, Kentucky

Distance (feet)

Date of Assessment - 12/13/11

-30

-10

-50

30

50

70

90

10

380

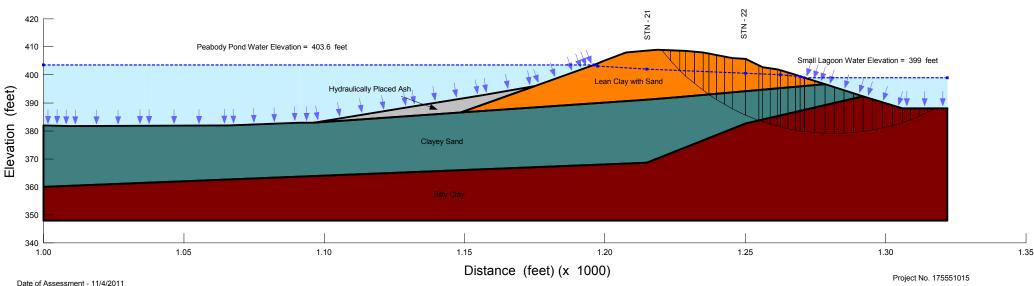
-90

-70

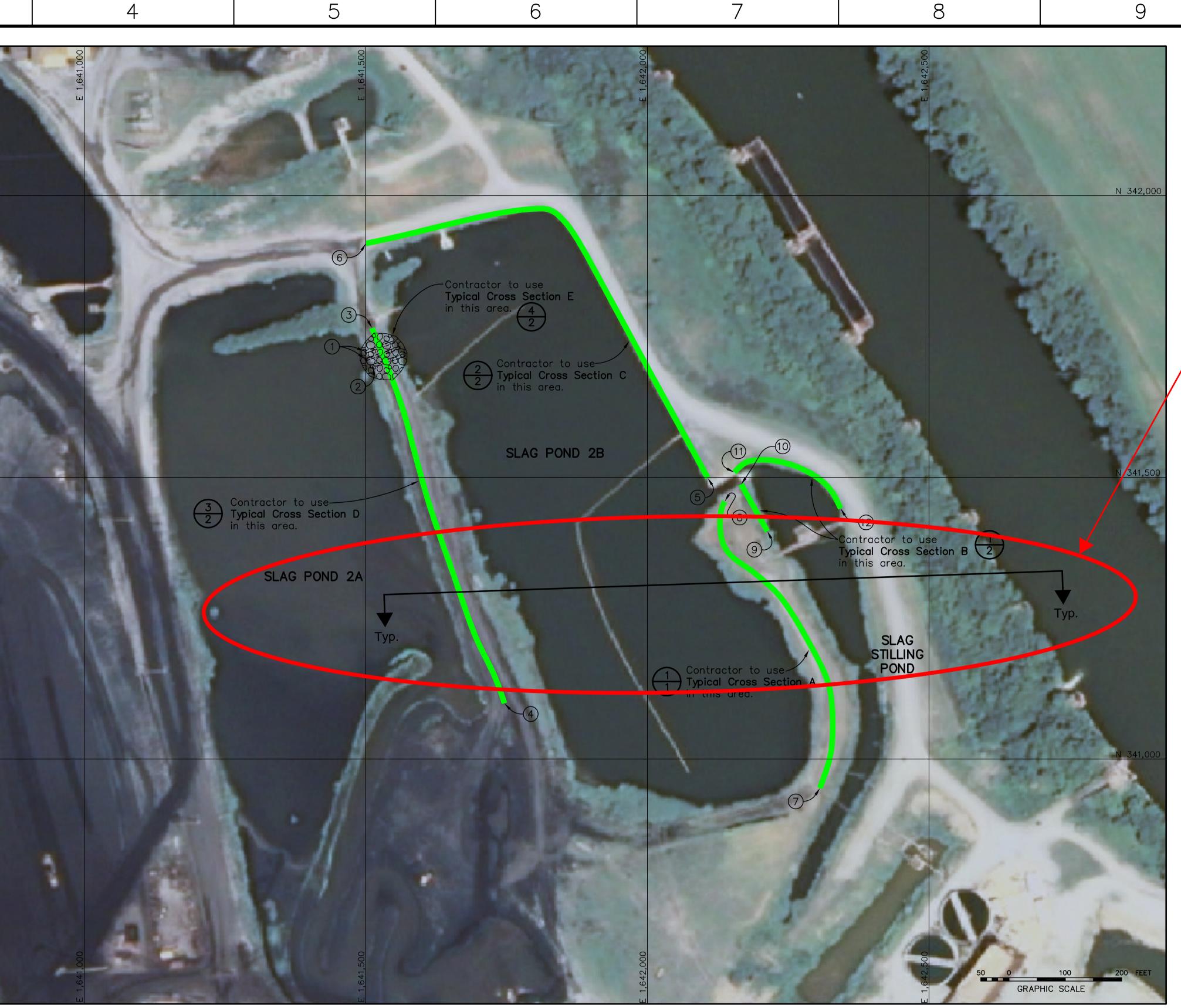
110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490 510

Project No. 175551015

Section A - Peabody Ash Pond Paradise Fossil Plant Drakesboro, Kentucky


Material Type	Unit Weight	Cohesion	Friction Angle
Lean Clay with Sand	139 pcf	0 psf	25 °
Hydraulically Placed Ash	107 pcf	100 psf	18.4 °
Clayey Sand	133 pcf	120 psf	21 °
Silty Clay	129 pcf	120 psf	20 °

Note:


The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Factor of Safety: 1.0

Horizontal Seismic Coefficient Kh = 0.157 g 2500 year Return Period Event

	10-60/M01	2 7 9	2		3
A				N 342,00	
 B	KEYNOTES 1 Existing 4 2 Existing 6	8" Pipe (2). 0" Pipe.			
U	N 341,76 E 1,641,51 (4) End Slope N 341,09	1.25 Improvements (Bot 19.61			
	(Pool side N 341,49 E 1,642,10	ss II Channel Lining , Slag Pond 2B) 9.29)7.18	at Concrete Flume		
С	(Pool side N 341,91 E 1,641,50 (7) Begin Clas (Pool side N 340,94	0.55 ss II Channel Lining , Slag Pond 2B) 18.45		<u>N 341,50</u>)0
	E 1,642,30 (8) End Class (Pool side N 341,48 E 1,642,12	06.10 Il Channel Lining at , Slag Pond 2B) 22.01 20.86	t concrete flume		
D	(Pool side N 341,40 E 1,642,21 (10) End Class (Pool side N 341,48 E 1,642,16	12.95 III Channel Lining a , Slag Stilling Pond) 57.93 56.15 56.15 ss III Channel Lining , Slag Stilling Pond) 99.20	t Concrete Flume	N 341,00	
E	(12) End Class (Pool side N 341,44 E 1,642,34 NOTES: 1. Horizon NAD27 (feet).	III Channel Lining , Slag Stilling Pond) -5.91	linates shown is Ine South Zone		
F					
				420	Slag Pond 2B
G				415 Appro	x. Elev. 411.5'
				410 405	<u>Elev.</u> 410.0'
Н				400	
	1		2		3

PLAN – COAL YARD SLAG POND 2B AND SLAG STILLING POND SCALE: 1"=100'

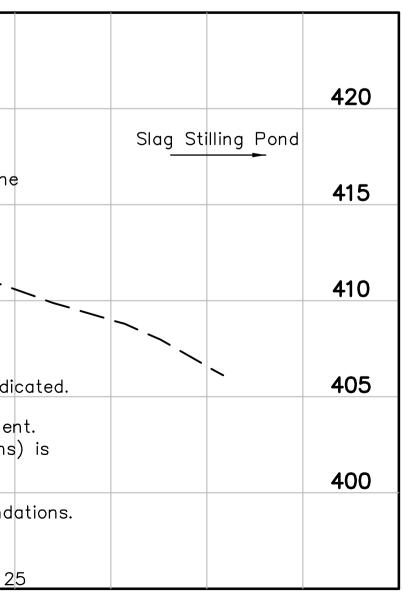
3		18'	e)									
	(18' Approximat	lev. 415.0	, \							Existing	Groundlin
			3.1							— _ Ĺ	~	
		1000		Class II (Channel Lir	ning						
<u>0'</u>			2" (Min.)									`
	Filter Fabr											
	Type I		N	OTES:								
	51		_	The objec	tive of th	is repair is	to provid	e wave-wa	ash protec	tion to the	e slope in	areas ind
			2.	. All dimen	sions shall	be consid	lered appro	oximate ar	d subject	to field a	djustments	5.
			3.	. The recor						-		
				However, acceptabl		fabric that	meets or	exceeds	Type I crit	eria (as p	er KTC spe	ecifications
			4.	. Filter Fab	ric shall b	e furnished	l in minim	um 15 fee	t (width)	rolls.		
			5.	. Contracto	r shall ref	fer to the	letter asso	ciated wit	h this dra	wing for a	dditional re	ecommend
		0	5									
		Ζ	J				L C	Ų				Z

5

1 TYPICAL CROSS SECTION A - SLOPE IMPROVEMENT 1 MITH CLASS II CHANNEL LINING (SLAG POND 2B) SCALE: 1"=5'

4

Paradise Fossil Plant, Sla 2B. Approximate Locatio Section (Typical) used to pseudostatic slope stabili


NOTE: Slope impi be avoided Class II Cł

10

EXCESS Excess ma disposed a PAF plant

UTILITY N The I shown he warranty accurate informatic this site utilities n Prior improveme TVA PAF I within the utilities, as necess of the wo Pond situated utilities.

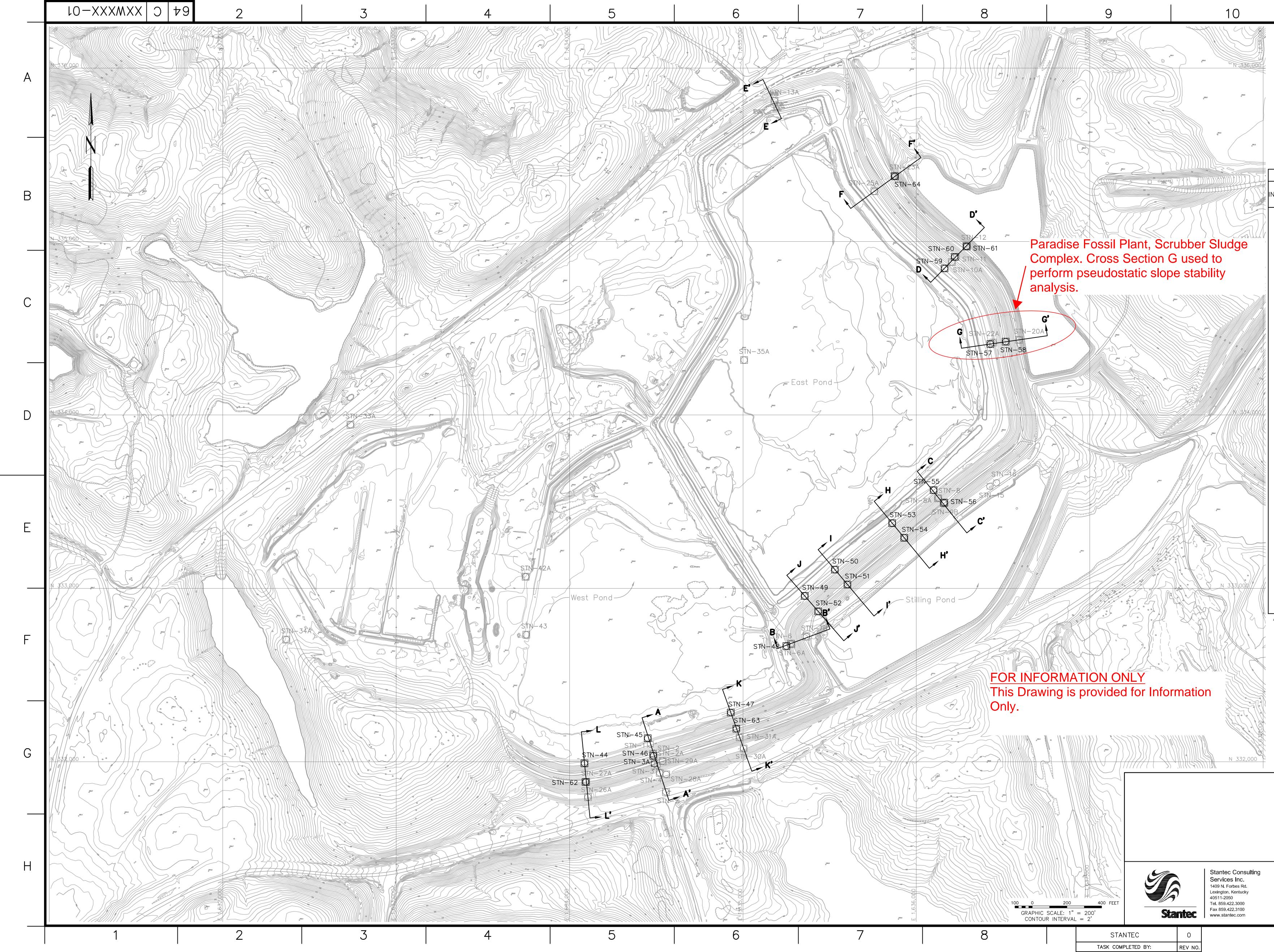
7

FOR INFORMATION ONLY This Drawing which has been previously submitted to TVA is provided for Information Only.

Stantec Consulting Services Inc. 1409 N. Forbes Rd.
 Ites
 <th

ISSUED FOR CONSTRUCTIO)N
-------------------------------	----

7		

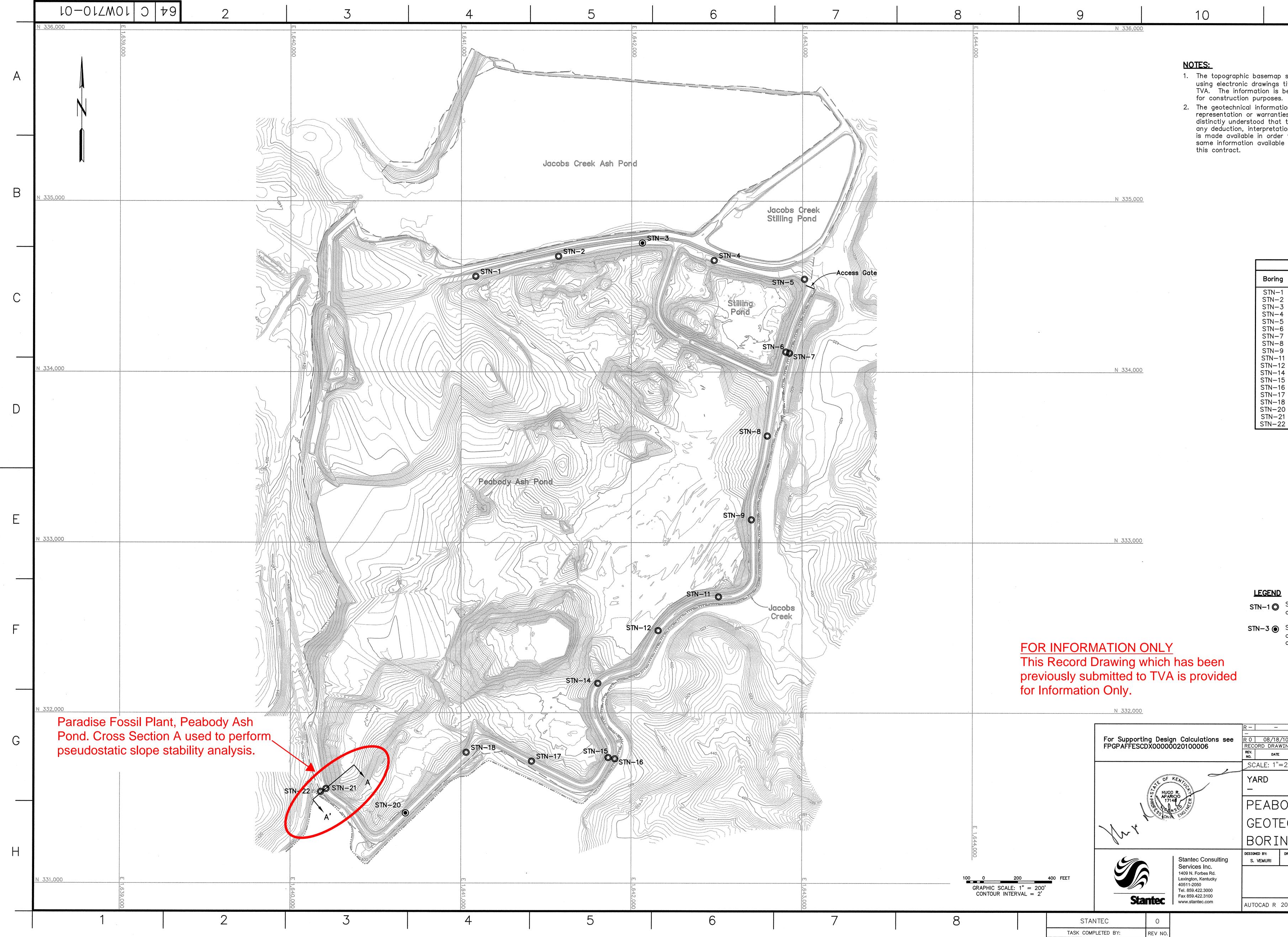

8

STANTEC

TASK COMPLETED BY:

0 REV NO.

	11			12		
						Δ
						A
						B
lag Ponds ion of Cros o perform	SS					
ility analys	515.					C
						0
	olving cut within 10					
Channel Lining v MATERIAL DI naterial produce of at a dispose	may be improved where feasible unde SPOSAL NOTE: d by improvements al facility on-site	er the directions shown hereo	on of TVA. on shall be	f		D
ereon shall be c	and types of any considered approxin hat the utility info	nate. Stantec	does not		ko.DWG	
or complete. A ion shown is he may result in t not shown hered or to any design nents shown her Plant personne	ny Contractor, Ow reby forewarned th the discovery of ac	ner or designe at any excave dditional under n the vicinity or shall coord e location of e	er using ation upon rground of any linate with all utilities		SHORELINE\REV0_IFC\10W709-01-R0.DWG	E
making arrange ssary, and maint ork. Ids located with	ments regarding re aining utility service in the fenced port umerous above-gr	elocation and/ ce throughout ions of the P	or protecti the course lant are	on	2A2B	
			Section or [Detail No.	PLOT DATE: 12/21/2009 USER: JOHNSON, TRACY V:\1756\ACTIVE\175669016\ENVIRONMENTAL\DRAWING\SLAG_POND.	F
R – –		Ŭ	Sheet Where		 PLOT DATE: 12/21/200 V:\1756\ACTIVE\17566:	
– R 0 12/21/09	MMM BFS JDK TRUCTION	ELC ELC	ELC TJ	_		DISCIPLINE INTERFACE
rev. date no. date SCALE: AS SH	dsgn drwn chkd OWN	SUPV RVWD	APPD ISSD	PROJECT ID EXCEPT	as const rev CD	1 2 3 4
YARD						
COAL Y	ARD SLA	G PONF) <u>s</u> 2a	. 2R	AND	
	TILLING			-		
IMPRO\	/EMENTS-	PLAN ,	AND S	SECTI	ONS	
DESIGNED BY: DRAWN M. MEEHAN B.	SAMS J. KEELING	E. CAUDILL	E. CAUDILL	APPROVED BY: E. CAUDILL	ISSUED BY: T. JOHNSON	
	TENNESSEE	SE FOSSIL VALLEY AU D HYDRO ENGINE	UTHORIT	Y		
AUTOCAD R 2000	DATE	10W7	<u>′09−0</u>	1	R O	
		PLOT FA	CTOR:XX W_TVA		A.D. DRAWING T ALTER MAN	


DE PF BE CC 2. TH AF DI NC CC AN	HE TOPOGRAPH EVELOPED BY ROVIDED BY T ELIEVED TO BE ONSTRUCTION HE GEOTECHNI RE FURNISHED STINCTLY UND OT BE RESPON ONCLUSION DR VAILABLE IN C CCESS TO THE	STANTEC USING VA IN MARCH, E APPROXIMATE PURPOSES. ICAL INFORMATION IDED AS REPRES FOR INFORMAT DERSTOOD THAT NSIBLE FOR AN RAWN THERE FR DRDER THAT THE E SAME INFORM.	ON AND DATA FU SENTATION OR W TION ONLY. IT S THE OWNER OR Y DEDUCTION, IN ROM. THE INFORM E CONTRACTOR M	C DRAWING ORMATION IS OT BE USED FOR URNISHED HEREIN VARRANTIES BUT SHALL BE ENGINEER WILL TERPRETATION OR MATION IS MADE MAY HAVE READY E TO THE OWNER	A
				·	¬
NSTRUMENT		EASTING	ELEVATION	ACE PIEZOMETER TIP	[^] B
STN-1* STN-2 STN-2A STN-3* STN-3A* STN-4	332,102.89 332,046.91 332,046.91 331,980.02 331,989.56 331,937.06	1,634,482.61 1,634,482.61 1,634,505.77 1,634,489.16	494.3 494.3 483.5 489.8	(FEET) NA 437.1 468.9 NA NA 420.7	
STN-5 STN-6 STN-6A STN-7B STN-8* STN-88 STN-9B STN-10A STN-10A STN-11* STN-12 STN-12 STN-13A STN-15* STN-15* STN-16* STN-20A STN-22A STN-23A	331,826.79 332,682.25 332,677.36 332,721.84 333,522.45 333,519.21 333,490.39 334,881.85 334,909.50 334,974.78 335,811.89 333,588.73 333,609.25 334,433.28 334,417.64 335,379.92	1,634,555.94 1,635,277.08 1,635,279.66 1,635,366.07 1,636,128.32 1,636,124.51 1,636,156.12 1,636,204.33 1,636,204.33 1,636,288.23 1,635,182.62 1,636,423.97 1,636,462.16 1,636,592.28 1,636,443.36	452.0 510.9 511.0 486.8 510.2 510.2 510.2 510.2 510.2 510.2 497.5 514.0 504.5 494.4 525.1 480.9 481.1 489.7 519.4	399.3 413.1 472.6 474.4 NA 452.3 455.5 465.7 NA 464.4 504.0 NA A464.0 NA 470.7 490.4 470.0	С
STN-25A STN-25A STN-26A STN-27A STN-29A STN-29A STN-30A STN-30A STN-31A STN-31A STN-34A STN-35A STN-42 STN-42 STN-43 STN-43 STN-45 STN-46	335,379.92 335,289.98 331,796.20 331,884.74 331,927.41 332,004.37 332,077.28 332,141.29 333,944.10 332,705.10 334,316.70 333,067.40 332,733.20 331,991.72 332,136.33 332,034.92	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	523.3 471.4 492.2 470.2 489.1 470.5 487.0 527.2 510.9 520.4 515.5 515.7 513.5 510.0 517.0	470.0 489.5 454.1 470.3 454.2 470.9 455.6 468.9 478.3 485.6 496.6 470.7 500.7 487.9 498.1 501.0 486.1	D
STN - 47 STN - 48 STN - 49 STN - 50 STN - 51 STN - 52 STN - 53 STN - 54 STN - 55 STN - 56 STN - 57 STN - 58 STN - 59 STN - 60 STN - 61 STN - 62 STN - 63	332,034.52 332,284.56 332,956.89 333,108.69 333,022.54 332,867.62 333,376.37 333,291.99 333,566.60 333,494.76 334,409.01 334,422.92 334,845.21 334,911.36 334,971.36 331,883.99 332,191.18	1,634,929.95 1,635,250.39 1,635,356.31 1,635,530.13 1,635,602.72 1,635,433.99 1,635,860.86 1,635,930.41 1,636,099.43 1,636,161.26 1,636,426.68 1,636,515.29 1,636,162.73 1,636,220.95 1,636,290.43 1,634,092.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	490.5 485.1 501.0 502.0 486.9 481.5 504.1 487.1 514.7 482.0 511.9 480.1 512.0 496.7 485.4 480.1 487.0	1-02-R0.DWG
STN-64	335,375.88 SLOPE INCLIN END EXISTING PI	1,635,876.57 NOMETER		485.4	PLOT DATE: 08/25/2011 USER: FLYNN, RENEE V:\1756\ACTIVE\175660005\ENVIRONMENTAL\DRAWING\PAF\10WB51-02-R0.DWG
		•	EVIOUSLY INSTALL	•	PLOT DATE: 08/25/2011 USER: V:\1756\ACTIVE\175660005\ENV
R – – – R – –	- - -				- DISCIPLINE
REV. DAT		DRWN CHKD SUPV	RVWD APPD I	SSD PROJECT AS CON	2
SCALE: 1				EXCEPT AS NO	OTED ₄
		E COMPLEX	PLORATI		
		UAL EXF		JIN	
DESIGNED BY:	DRAWN BY: C	CHECKED BY: SUPERV	VISED BY: REVIEWED BY:	APPROVED BY: ISSUED	BY:
	-	NNESSEE VAL	OSSIL PLANT		
AUTOCAD R	2000 _		RO ENGINEERING	- 01 R	0
			PLOT FACTOR:20		

11

C.A.D. DRAWING DO NOT ALTER MANUALLY

PLOT FACTOR:200

W_TVA

12

С

D

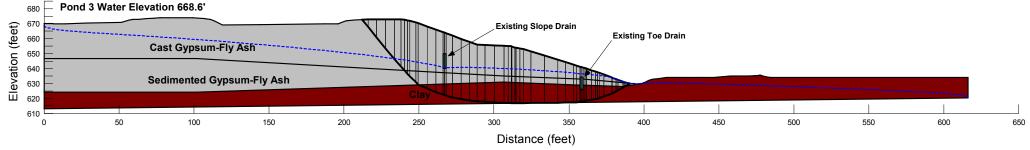
The topographic basemap shown on this drawing was developed by Stantec using electronic drawings titled "PA000112.dwg and PA000008.dwg" provided by TVA. The information is believed to be approximate and should not be used

The geotechnical information and data furnished herein are not intended as representation or warranties but are furnished for information only. It shall be distinctly understood that the Owner or Engineer will not be responsible for any deduction, interpretation or conclusion drawn there—from. The information is made available in order that the Contractor may have ready access to the same information available to the Owner and the Engineer and is not part of this contract.

BORING LOCATION TABLE								
Boring	Northing	Easting	Elevation (Feet)					
STN-1 STN-2 STN-3 STN-4 STN-5 STN-6 STN-7 STN-8 STN-7 STN-8 STN-7 STN-12 STN-11 STN-12 STN-12 STN-14 STN-15 STN-16 STN-16 STN-17 STN-18 STN-20 STN-21 STN-22	334,559.32 334,677.03 334,754.96 334,653.35 334,543.94 334,117.67 334,110.95 333,625.59 333,133.89 332,681.40 332,482.84 332,172.87 331,736.99 331,729.49 331,715.59 331,767.22 331,411.04 331,553.80 331,536.19	1,641,085.25 1,641,570.83 1,642,063.67 1,642,483.20 1,643,012.25 1,642,904.88 1,642,925.61 1,642,796.92 1,642,703.74 1,642,510.51 1,642,158.00 1,641,803.35 1,641,846.45 1,641,903.96 1,641,415.12 1,641,030.49 1,640,675.64 1,640,209.81 1,640,178.58	411.2 408.6 408.5 407.9 407.9 407.8 401.4 408.4 407.8 408.4 408.5 408.3 407.9 400.1 407.8 400.1 407.8 408.0 408.3 408.0 408.3 408.3 408.5					

LEGEND											\REV0	
TN-1 🔘	Soil Boring with Standard Penetration Tests											
LEGEND NTN-1 ○ Soil Boring with Standard Penetration Tests and/or Undisturbed (Shelby) Tube Samples TN-3 ● Soil Boring with Standard Penetration Tests and/or Undisturbed (Shelby) Tube Samples and Rock Core RECORD DRAWING Record Drawing								F				
											18/2010 U \175569069`	
			REC	OR	D D	RA	WIN	G			PLUI DAIE: 08/ V:\1755\ACTIVE\	
		—				—					<u> </u>	
08/18/		SV	JRF	SV	SV s	SV	HRA	TJ			1-	DISCIPLINE
DATE		DSGN	DRWN	СНКО	SUPV	RVWD	APPD	ISSD	PROJECT	AS CONST	REV	1 2
CALE: 1"=	200	I							EXCEPT	AS NOT	ED	3 4
EABODY ASH POND												
EOTE	ECł	HN	ICA	LE	EXP	LOF	RAT	ION	۷.			
ORIN	١G	LA	٩YC	UT								
NED BY: . VEMURI	DRAWN R. F	by: Tlynn	CHECKED S. VE		SUPERVISE S. VEM	1	reviewed i S. VEMU		approved by: I. APARICIO	ISSUED BY		
PARADISE FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING												
FOCAD R 2	2000	DATE 08/18,		4 C	1	0W	710	-0	1	R 0		
PLOT FACTOR:XX C.A.D. DRAWING W_TVA DO NOT ALTER MANUALI												

Widows Creek Fossil Plant (WCF)


Section F - Gypsum Stack Widows Creek Fossil Plant Stevenson, Alabama

Note: The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Material Type	Unit Weight	Cohesion	Friction Angle
Cast Gypsum-Fly Ash	113 pcf	0 psf	40 °
Sedimented Gypsum-Fly Ash	112 pcf	0 psf	41 °
Sand Drains	110 pcf	0 psf	33 °
Clay	123 pcf	650 psf	15.7 °

Factor of Safety: 1.5

Horizontal Sesmic Coefficient Kh = 0.1 g 2500 year Return Period Event

Date of Assessment - 11/4/2011

Project No. 175551015

Section D - Dredge Cell (Old Scrubber Sludge Pond) Widows Creek Fossil Plant Stevenson, Alabama

Material Type Unit Weight Friction Angle Cohesion Residual Fat Clay Silt with Sand (Bottom Ash) 125 pcf 650 psf 15.7 ° 33 ° 112 pcf 0 psf Silt (Fly Ash) 112 pcf 0 psf 21.8 ° Sand With Gravel (Bottom Ash) Fat Clay with Gravel (Embankment Fill) 119 pcf 0 psf 33 ° 1375 psf 14.2 ° 125 pcf

Note: The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Factor of Safety: 1.1 Horizontal Sesmic Coefficient Kh = 0.1 g

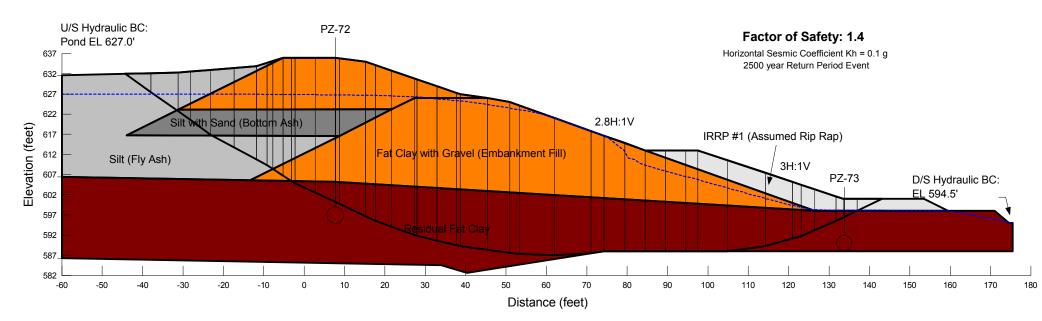
2500 year Return Period Event

PZ-100 650 PZ-101 640 With Gra 630 Sand With Gravel ave Elevation (ft) 000 (ft) Silt (Fly Ash) ا Gr (Emb nkment Fill 590 580 570 -80 -60 -40 -20 20 40 80 100 120 140 200 220 240 260 280 300 320 360 -100 0 60 160 180 340 Distance

Date of Assessment - 11/04/2011

Stantec

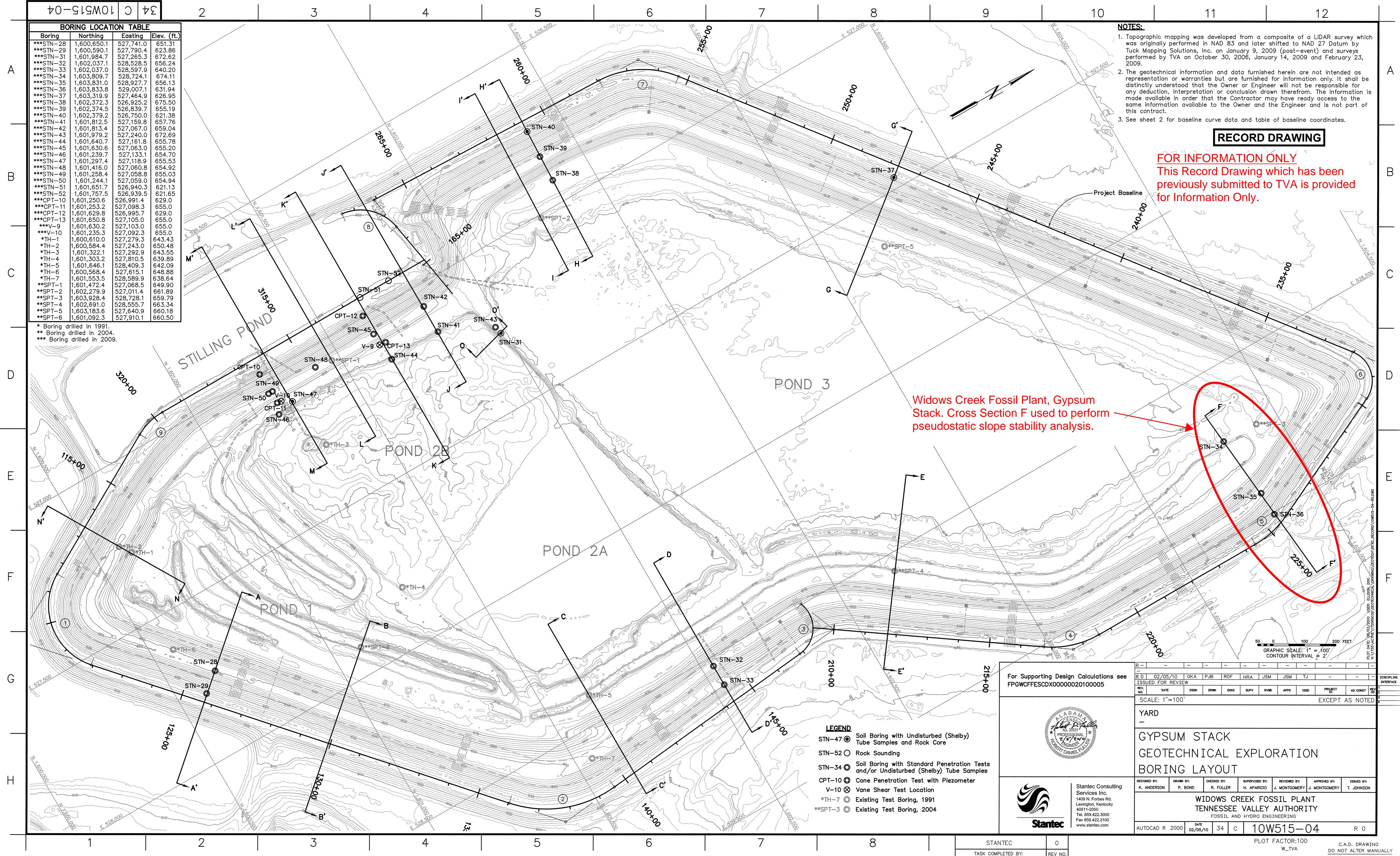
Project No. 175551015

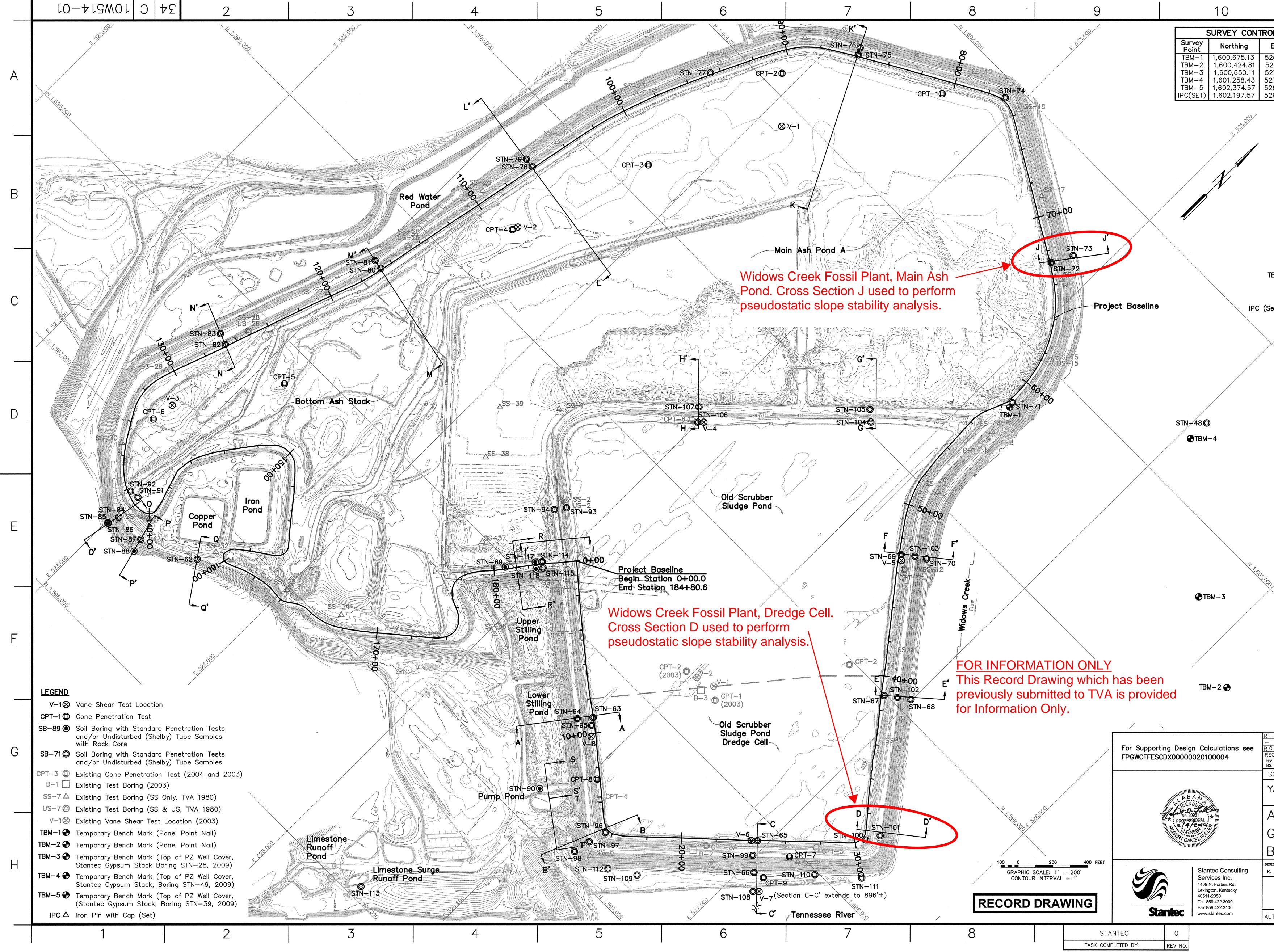

Section J - Main Ash Pond Widows Creek Fossil Plant Stevenson, Alabama

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Additional remediation measures taken from URS plans dated 8/14/2010.


Material Type	Unit Weight	Cohesion	Friction Angle
Sand with Gravel (Bottom Ash)	119 pcf	0 psf	33 °
Rip Rap	115 pcf	0 psf	40 °
Silt (Fly Ash)	112 pcf	0 psf	21.8 °
Residual Fat Clay	125 pcf	650 psf	15.7 °
Fat Clay with Gravel (Embankment Fill)	125 pcf	1375 psf	14.2 °



Date of Assessment - 11/4/2011

Project No. 175551015

	11 12						
OL TABLE	vation		BORING LOC	E Elevation			
Edsting (F 526,198.77 63	Feet) 36.75 16.34	Boring	Northing	Easting 523,864.1	(Feet) 636.0		
527,741.06 65 527,058.79 65	51.46 54.99 55.19	V-2 V-3 V-4	1,599,381.1 1,597,268.3 1,599,385.6	523,453.6 522,789.7 525,014.6	636.4 636.0 645.9		А
526,907.77 67	76.73	V-5 V-6 V-7	1,599,662.8 1,597,855.6 1,597,691.2	526,325.4 526,911.6 527,181.6	647.6 645.0 601.5		
N		V-8 CPT-1 CPT-2	1,597,661.0 1,601,668.3 1,601,097.5	525,832.6 524,646.2 523,912.5	646.1 636.6 636.7		
×~		CPT-3 CPT-4 CPT-5	1,600,179.8 1,599,361.5 1,597,807.1	523,743.4 523,455.3 523,159.9	636.0 636.4 642.4		
		CPT-6 CPT-7 CPT-8	1,597,127.6 1,597,948.6 1,597,477.5	522,770.4 527,145.3 526,046.5	647.3 638.2 646.5		
		CPT-9 STN-48 STN-62	1,597,756.7 1,601,416.0 1,596,738.1	527,123.4 527,060.8 523,522.1	604.3 654.9 635.8		В
		STN-63 STN-64 STN-65	1,597,711.8 1,597,643.0	525,777.5 525,718.1	646.1 638.1		
		STN-66 STN-67	1,597,882.0 1,597,739.2 1,598,989.4	526,948.3 527,065.2 526,868.9	645.0 606.3 647.0		
		STN-68 STN-69 STN-70	1,599,083.7 1,599,634.0 1,599,720.3	526,995.0 526,360.9 526,482.8	611.4 647.6 613.3		
ТВМ—5 €		STN-71 STN-72 STN-73	1,600,703.4 1,601,431.1 1,601,547.9	526,190.1 525,775.3 525,835.7	636.6 636.6 598.5		
		STN-74 STN-75 STN-76	1,601,909.1 1,601,484.2 1,601,519.8	524,916.3 524,146.7 524,124.6	635.7 636.7 624.5		0
Set)		STN-77 STN-78 STN-79	1,600,807.9 1,599,698.1 1,599,704.9	523,621.0 523,281.1 523,225.1	636.1 636.8 622.8		C
		STN-80 STN-81 STN-82	1,598,668.7 1,598,675.7	523,078.9 523,024.0	637.2 625.5		
×,		STN-83 STN-84	1,597,723.5 1,597,747.8 1,596,588.0	522,758.9 522,694.6 523,031.0	636.9 624.9 639.3		
N. E0.2000		STN-85 STN-86 STN-87	1,596,520.8 1,596,518.5 1,596,587.8	523,008.4 523,011.9 523,211.1	614.6 617.6 637.4		
		STN-88 STN-89 STN-90	1,596,511.6 1,597,963.8 1,597,204.1	523,232.4 524,804.6 525,851.5	618.5 636.3 613.2		
		STN-91 STN-92 STN-93	1,596,746.8 1,596,741.8 1,598,456.4	523,027.9 522,972.4 524,812.1	641.1 640.1 641.8		D
		STN-94 STN-95 STN-96	1,598,399.5 1,597,673.7 1,597,293.4	524,769.6 525,803.4 526,298.6	639.0 646.1		
		STN-97 STN-98	1,597,191.9 1,597,091.5	526,271.3 526,250.2	647.6 638.6 602.5		
		STN-99 STN-100 STN-101	1,597,803.4 1,598,328.0 1,598,404.3	526,989.8 527,385.4 527,426.8	638.4 644.1 638.8		
		STN-102 STN-103 STN-104	1,599,036.5 1,599,683.2 1,600,046.7	526,931.3 526,424.2 525,695.6	638.7 638.9 645.9		
		STN-105 STN-106 STN-107	1,600,094.3 1,599,340.1 1,599,407.0	525,640.4 524,994.7 524,937.4	637.6 645.9 636.7		F
÷		STN-108 STN-109 STN-110	1,597,658.1 1,597,251.2 1,597,979.8	527,138.2 526,600.7 527,321.7	601.5 603.2 606.5	.DWG	L
E 578-000		STN-111 STN-112 STN-113	1,598,157.7 1,597,157.5 1,596,076.0	527,525.4 526,457.8 525,525.5	604.9 604.1 611.9	514-01-RO	
		STN-114 STN-115 STN-117	1,598,137.9 1,598,115.3	524,932.3 524,962.2	637.1 636.9	∈CORD\10W	
NOTES:		STN-118	1,598,107.2 1,598,082.9	524,906.3 524,937.4	636.8 636.7	PLOT DATE: 08/03/2010 USER: JOHNSON, TRACY V:\1755\ACTIVE\175569036\GEOTECHNICAL\DRAWING\GEOTECH\REV0_RECORD\10W514-01-R0.DWG	
Autho	ority (TVA	A) on April		r Tennessee Val e flight date f 1, 2008. The		r NG\GEOTEC	
hydro 2008	graphic : through	survey for July 7, 20	the Stilling Po)08. The hyd	ond is dated Ju rographic surve 19. The hydrog	ey for the	SON, TRAC' ICAL\DRAW	F
surve 23, 2	y for the	e Pump Po	nd Discharge	Channel is dat	ed June	SER: JOHN: \GEOTECHNI	
10W7-	420 title	d "Limesto	ne and Ash D	reated from Dr isposal Area" c	and	03/2010 U 175569036	
3. The F	^p roject B	aseline sha	own hereon is	o Units 7 and a for illustrative	purposes	DATE: 08/(55\ACTIVE\	
only,	and sho		used by the	Owner or Cont		PLOT	
R 0 02/04/10 RECORD DRAWING	GKA TJ	RDF I	HRA HRA H	RA TJ –	- [-		DISCIPLINE
NO. DATE SCALE: 1"=200		RMAN CHKD	SUPV RVWD A		EPT AS NO		
YARD				·			
ASH PO	ND						
GEOTECI	HNIC	CAL E	XPLORA	TION			
BORING			T		T		
ESIGNED BY: DRAWN K. ANDERSON T. JO	HNSON	R. FULLER	H. APARICIO H. A	APPROVED BY: APPROVED B APARICIO H. APARICIO			
WIDOWS CREEK FOSSIL PLANT TENNESSEE VALLEY AUTHORITY FOSSIL AND HYDRO ENGINEERING							
AUTOCAD R 2000	date 02/04/10	34 C	10W51		RC)	
			PLOT FACT W.		C.A.D. DRA O NOT ALTER		

C.A.D. DRAWING DO NOT ALTER MANUALLY

W_TVA